* Allow passing the onnxruntime to install.py

* Fix CI

* Disallow none execution providers in the UI

* Use CV2 to detect fps

* Respect trim on videos with audio

* Respect trim on videos with audio (finally)

* Implement caching to speed up preview and webcam

* Define webcam UI and webcam performance

* Remove layout from components

* Add primary buttons

* Extract benchmark and webcam settings

* Introduce compact UI settings

* Caching for IO and **** prediction

* Caching for IO and **** prediction

* Introduce face analyser caching

* Fix some typing

* Improve setup for benchmark

* Clear image cache via post process

* Fix settings in UI, Simplify restore_audio() using shortest

* Select resolution and fps via webcam ui

* Introduce read_static_image() to stop caching temp images

* Use DirectShow under Windows

* Multi-threading for webcam

* Fix typing

* Refactor frame processor

* Refactor webcam processing

* Avoid warnings due capture.isOpened()

* Resume downloads (#110)

* Introduce resumable downloads

* Fix CURL commands

* Break execution_settings into pieces

* Cosmetic changes on cv2 webcam

* Update Gradio

* Move face cache to own file

* Uniform namings for threading

* Fix sorting of get_temp_frame_paths(), extend get_temp_frames_pattern()

* Minor changes from the review

* Looks stable to tme

* Update the disclaimer

* Update the disclaimer

* Update the disclaimer
This commit is contained in:
Henry Ruhs 2023-09-19 11:21:18 +02:00 committed by GitHub
parent 7f69889c95
commit 66ea4928f8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
45 changed files with 866 additions and 588 deletions

BIN
.github/preview.png vendored

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

View File

@ -24,7 +24,7 @@ Read the [installation](https://docs.facefusion.io/installation) now.
Usage
-----
Run the program as needed.
Run the command:
```
python run.py [options]
@ -64,11 +64,11 @@ python run.py [options]
Disclaimer
----------
This software is meant to be a productive contribution to the rapidly growing AI-generated media industry. It will help artists with tasks such as animating a custom character or using the character as a model for clothing etc.
We acknowledge the unethical potential of FaceFusion and are resolutely dedicated to establishing safeguards against such misuse. This program has been engineered to abstain from processing inappropriate content such as nudity, graphic content and sensitive material.
The developers of this software are aware of its possible unethical applications and are committed to take preventative measures against them. It has a built-in check which prevents the program from working on inappropriate media including but not limited to nudity, graphic content, sensitive material such as war footage etc. We will continue to develop this project in the positive direction while adhering to law and ethics. This project may be shut down or include watermarks on the output if requested by law.
It is important to note that we maintain a strong stance against any type of pornographic nature and do not collaborate with any websites promoting the unauthorized use of our software.
Users of this software are expected to use this software responsibly while abiding the local law. If face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.
Users who seek to engage in such activities will face consequences, including being banned from our community. We reserve the right to report developers on GitHub who distribute unlocked forks of our software at any time.
Documentation

View File

@ -8,3 +8,4 @@ face_analyser_age : List[FaceAnalyserAge] = [ 'child', 'teen', 'adult', 'senior'
face_analyser_gender : List[FaceAnalyserGender] = [ 'male', 'female' ]
temp_frame_format : List[TempFrameFormat] = [ 'jpg', 'png' ]
output_video_encoder : List[OutputVideoEncoder] = [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc' ]

View File

@ -1,13 +1,14 @@
import threading
from typing import Any, Optional, List
import threading
import insightface
import numpy
import facefusion.globals
from facefusion.face_cache import get_faces_cache, set_faces_cache
from facefusion.typing import Frame, Face, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender
FACE_ANALYSER = None
THREAD_LOCK = threading.Lock()
THREAD_LOCK : threading.Lock = threading.Lock()
def get_face_analyser() -> Any:
@ -38,7 +39,12 @@ def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]:
def get_many_faces(frame : Frame) -> List[Face]:
try:
faces = get_face_analyser().get(frame)
faces_cache = get_faces_cache(frame)
if faces_cache:
faces = faces_cache
else:
faces = get_face_analyser().get(frame)
set_faces_cache(frame, faces)
if facefusion.globals.face_analyser_direction:
faces = sort_by_direction(faces, facefusion.globals.face_analyser_direction)
if facefusion.globals.face_analyser_age:
@ -100,7 +106,3 @@ def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Fa
if face['gender'] == 0 and gender == 'female':
filter_faces.append(face)
return filter_faces
def get_faces_total(frame : Frame) -> int:
return len(get_many_faces(frame))

29
facefusion/face_cache.py Normal file
View File

@ -0,0 +1,29 @@
from typing import Optional, List, Dict
import hashlib
from facefusion.typing import Frame, Face
FACES_CACHE : Dict[str, List[Face]] = {}
def get_faces_cache(frame : Frame) -> Optional[List[Face]]:
frame_hash = create_frame_hash(frame)
if frame_hash in FACES_CACHE:
return FACES_CACHE[frame_hash]
return None
def set_faces_cache(frame : Frame, faces : List[Face]) -> None:
frame_hash = create_frame_hash(frame)
if frame_hash:
FACES_CACHE[frame_hash] = faces
def clear_faces_cache() -> None:
global FACES_CACHE
FACES_CACHE = {}
def create_frame_hash(frame : Frame) -> Optional[str]:
return hashlib.sha256(frame.tobytes()).hexdigest() if frame is not None else None

View File

@ -1,6 +1,6 @@
from typing import List, Optional
from facefusion.typing import FaceRecognition, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender, TempFrameFormat
from facefusion.typing import FaceRecognition, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender, TempFrameFormat, OutputVideoEncoder
source_path : Optional[str] = None
target_path : Optional[str] = None
@ -23,7 +23,7 @@ trim_frame_end : Optional[int] = None
temp_frame_format : Optional[TempFrameFormat] = None
temp_frame_quality : Optional[int] = None
output_image_quality : Optional[int] = None
output_video_encoder : Optional[str] = None
output_video_encoder : Optional[OutputVideoEncoder] = None
output_video_quality : Optional[int] = None
max_memory : Optional[int] = None
execution_providers : List[str] = []

View File

@ -1,4 +1,5 @@
from typing import Dict, Tuple
import argparse
import os
import sys
import subprocess
@ -8,7 +9,7 @@ subprocess.call([ 'pip', 'install' , 'inquirer', '-q' ])
import inquirer
from facefusion import wording
from facefusion import metadata, wording
ONNXRUNTIMES : Dict[str, Tuple[str, str]] =\
{
@ -22,27 +23,38 @@ ONNXRUNTIMES : Dict[str, Tuple[str, str]] =\
def run() -> None:
answers : Dict[str, str] = inquirer.prompt(
[
inquirer.List(
'onnxruntime_key',
message = wording.get('select_onnxruntime_install'),
choices = list(ONNXRUNTIMES.keys())
)
])
program = argparse.ArgumentParser(formatter_class = lambda prog: argparse.HelpFormatter(prog, max_help_position = 120))
program.add_argument('--onnxruntime', help = wording.get('onnxruntime_help'), dest = 'onnxruntime', choices = ONNXRUNTIMES.keys())
program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
args = program.parse_args()
if args.onnxruntime:
answers =\
{
'onnxruntime': args.onnxruntime
}
else:
answers = inquirer.prompt(
[
inquirer.List(
'onnxruntime',
message = wording.get('onnxruntime_help'),
choices = list(ONNXRUNTIMES.keys())
)
])
if answers is not None:
onnxruntime_key = answers['onnxruntime_key']
onnxruntime_name, onnxruntime_version = ONNXRUNTIMES[onnxruntime_key]
onnxruntime = answers['onnxruntime']
onnxruntime_name, onnxruntime_version = ONNXRUNTIMES[onnxruntime]
python_id = 'cp' + str(sys.version_info.major) + str(sys.version_info.minor)
subprocess.call([ 'pip', 'uninstall', 'torch', '-y' ])
if onnxruntime_key == 'cuda':
if onnxruntime == 'cuda':
subprocess.call([ 'pip', 'install', '-r', 'requirements.txt', '--extra-index-url', 'https://download.pytorch.org/whl/cu118' ])
else:
subprocess.call([ 'pip', 'install', '-r', 'requirements.txt' ])
if onnxruntime_key != 'cpu':
if onnxruntime != 'cpu':
subprocess.call([ 'pip', 'uninstall', 'onnxruntime', onnxruntime_name, '-y' ])
if onnxruntime_key != 'coreml-silicon':
if onnxruntime != 'coreml-silicon':
subprocess.call([ 'pip', 'install', onnxruntime_name + '==' + onnxruntime_version ])
elif python_id in [ 'cp39', 'cp310', 'cp311' ]:
wheel_name = '-'.join([ 'onnxruntime_silicon', onnxruntime_version, python_id, python_id, 'macosx_12_0_arm64.whl' ])

View File

@ -2,7 +2,7 @@ METADATA =\
{
'name': 'FaceFusion',
'description': 'Next generation face swapper and enhancer',
'version': '1.1.0',
'version': '1.2.0',
'license': 'MIT',
'author': 'Henry Ruhs',
'url': 'https://facefusion.io'

View File

@ -1,4 +1,5 @@
import threading
from functools import lru_cache
import numpy
import opennsfw2
from PIL import Image
@ -7,7 +8,7 @@ from keras import Model
from facefusion.typing import Frame
PREDICTOR = None
THREAD_LOCK = threading.Lock()
THREAD_LOCK : threading.Lock = threading.Lock()
MAX_PROBABILITY = 0.75
@ -34,10 +35,12 @@ def predict_frame(target_frame : Frame) -> bool:
return probability > MAX_PROBABILITY
def predict_image(target_path : str) -> bool:
return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
@lru_cache(maxsize = None)
def predict_image(image_path : str) -> bool:
return opennsfw2.predict_image(image_path) > MAX_PROBABILITY
def predict_video(target_path : str) -> bool:
_, probabilities = opennsfw2.predict_video_frames(video_path = target_path, frame_interval = 100)
@lru_cache(maxsize = None)
def predict_video(video_path : str) -> bool:
_, probabilities = opennsfw2.predict_video_frames(video_path = video_path, frame_interval = 25)
return any(probability > MAX_PROBABILITY for probability in probabilities)

View File

@ -57,16 +57,19 @@ def clear_frame_processors_modules() -> None:
FRAME_PROCESSORS_MODULES = []
def multi_process_frame(source_path : str, temp_frame_paths : List[str], process_frames: Callable[[str, List[str], Any], None], update: Callable[[], None]) -> None:
with ThreadPoolExecutor(max_workers = facefusion.globals.execution_thread_count) as executor:
futures = []
queue = create_queue(temp_frame_paths)
queue_per_future = max(len(temp_frame_paths) // facefusion.globals.execution_thread_count * facefusion.globals.execution_queue_count, 1)
while not queue.empty():
future = executor.submit(process_frames, source_path, pick_queue(queue, queue_per_future), update)
futures.append(future)
for future in as_completed(futures):
future.result()
def multi_process_frames(source_path : str, temp_frame_paths : List[str], process_frames : Callable[[str, List[str], Callable[[], None]], None]) -> None:
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
with tqdm(total = len(temp_frame_paths), desc = wording.get('processing'), unit = 'frame', dynamic_ncols = True, bar_format = progress_bar_format) as progress:
with ThreadPoolExecutor(max_workers = facefusion.globals.execution_thread_count) as executor:
futures = []
queue_temp_frame_paths : Queue[str] = create_queue(temp_frame_paths)
queue_per_future = max(len(temp_frame_paths) // facefusion.globals.execution_thread_count * facefusion.globals.execution_queue_count, 1)
while not queue_temp_frame_paths.empty():
payload_temp_frame_paths = pick_queue(queue_temp_frame_paths, queue_per_future)
future = executor.submit(process_frames, source_path, payload_temp_frame_paths, lambda: update_progress(progress))
futures.append(future)
for future_done in as_completed(futures):
future_done.result()
def create_queue(temp_frame_paths : List[str]) -> Queue[str]:
@ -84,13 +87,6 @@ def pick_queue(queue : Queue[str], queue_per_future : int) -> List[str]:
return queues
def process_video(source_path : str, frame_paths : List[str], process_frames : Callable[[str, List[str], Any], None]) -> None:
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
total = len(frame_paths)
with tqdm(total = total, desc = wording.get('processing'), unit = 'frame', dynamic_ncols = True, bar_format = progress_bar_format) as progress:
multi_process_frame(source_path, frame_paths, process_frames, lambda: update_progress(progress))
def update_progress(progress : Any = None) -> None:
process = psutil.Process(os.getpid())
memory_usage = process.memory_info().rss / 1024 / 1024 / 1024

View File

@ -1,5 +1,4 @@
from typing import Any, List, Callable
import cv2
import threading
from gfpgan.utils import GFPGANer
@ -9,10 +8,11 @@ from facefusion.core import update_status
from facefusion.face_analyser import get_many_faces
from facefusion.typing import Frame, Face, ProcessMode
from facefusion.utilities import conditional_download, resolve_relative_path, is_image, is_video
from facefusion.vision import read_image, read_static_image, write_image
FRAME_PROCESSOR = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_ENHANCER'
@ -54,6 +54,7 @@ def pre_process(mode : ProcessMode) -> bool:
def post_process() -> None:
clear_frame_processor()
read_static_image.cache_clear()
def enhance_face(target_face : Face, temp_frame : Frame) -> Frame:
@ -83,20 +84,19 @@ def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame)
return temp_frame
def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress: Callable[[], None]) -> None:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
temp_frame = read_image(temp_frame_path)
result_frame = process_frame(None, None, temp_frame)
cv2.imwrite(temp_frame_path, result_frame)
if update:
update()
write_image(temp_frame_path, result_frame)
update_progress()
def process_image(source_path : str, target_path : str, output_path : str) -> None:
target_frame = cv2.imread(target_path)
target_frame = read_static_image(target_path)
result_frame = process_frame(None, None, target_frame)
cv2.imwrite(output_path, result_frame)
write_image(output_path, result_frame)
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
facefusion.processors.frame.core.process_video(None, temp_frame_paths, process_frames)
facefusion.processors.frame.core.multi_process_frames(None, temp_frame_paths, process_frames)

View File

@ -1,5 +1,4 @@
from typing import Any, List, Callable
import cv2
import insightface
import threading
@ -11,9 +10,10 @@ from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_
from facefusion.face_reference import get_face_reference, set_face_reference
from facefusion.typing import Face, Frame, ProcessMode
from facefusion.utilities import conditional_download, resolve_relative_path, is_image, is_video
from facefusion.vision import read_image, read_static_image, write_image
FRAME_PROCESSOR = None
THREAD_LOCK = threading.Lock()
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER'
@ -43,7 +43,7 @@ def pre_process(mode : ProcessMode) -> bool:
if not is_image(facefusion.globals.source_path):
update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
return False
elif not get_one_face(cv2.imread(facefusion.globals.source_path)):
elif not get_one_face(read_static_image(facefusion.globals.source_path)):
update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
return False
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
@ -56,6 +56,7 @@ def pre_process(mode : ProcessMode) -> bool:
def post_process() -> None:
clear_frame_processor()
read_static_image.cache_clear()
def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
@ -76,32 +77,31 @@ def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame)
return temp_frame
def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
source_face = get_one_face(cv2.imread(source_path))
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress: Callable[[], None]) -> None:
source_face = get_one_face(read_static_image(source_path))
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_recognition else None
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
temp_frame = read_image(temp_frame_path)
result_frame = process_frame(source_face, reference_face, temp_frame)
cv2.imwrite(temp_frame_path, result_frame)
if update:
update()
write_image(temp_frame_path, result_frame)
update_progress()
def process_image(source_path : str, target_path : str, output_path : str) -> None:
source_face = get_one_face(cv2.imread(source_path))
target_frame = cv2.imread(target_path)
source_face = get_one_face(read_static_image(source_path))
target_frame = read_static_image(target_path)
reference_face = get_one_face(target_frame, facefusion.globals.reference_face_position) if 'reference' in facefusion.globals.face_recognition else None
result_frame = process_frame(source_face, reference_face, target_frame)
cv2.imwrite(output_path, result_frame)
write_image(output_path, result_frame)
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
conditional_set_face_reference(temp_frame_paths)
frame_processors.process_video(source_path, temp_frame_paths, process_frames)
frame_processors.multi_process_frames(source_path, temp_frame_paths, process_frames)
def conditional_set_face_reference(temp_frame_paths : List[str]) -> None:
if 'reference' in facefusion.globals.face_recognition and not get_face_reference():
reference_frame = cv2.imread(temp_frame_paths[facefusion.globals.reference_frame_number])
reference_frame = read_static_image(temp_frame_paths[facefusion.globals.reference_frame_number])
reference_face = get_one_face(reference_frame, facefusion.globals.reference_face_position)
set_face_reference(reference_face)

View File

@ -1,5 +1,4 @@
from typing import Any, List, Callable
import cv2
import threading
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
@ -10,10 +9,11 @@ from facefusion import wording, utilities
from facefusion.core import update_status
from facefusion.typing import Frame, Face, ProcessMode
from facefusion.utilities import conditional_download, resolve_relative_path
from facefusion.vision import read_image, read_static_image, write_image
FRAME_PROCESSOR = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER'
@ -63,6 +63,7 @@ def pre_process(mode : ProcessMode) -> bool:
def post_process() -> None:
clear_frame_processor()
read_static_image.cache_clear()
def enhance_frame(temp_frame : Frame) -> Frame:
@ -75,20 +76,19 @@ def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame)
return enhance_frame(temp_frame)
def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None:
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress: Callable[[], None]) -> None:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
temp_frame = read_image(temp_frame_path)
result_frame = process_frame(None, None, temp_frame)
cv2.imwrite(temp_frame_path, result_frame)
if update:
update()
write_image(temp_frame_path, result_frame)
update_progress()
def process_image(source_path : str, target_path : str, output_path : str) -> None:
target_frame = cv2.imread(target_path)
target_frame = read_static_image(target_path)
result = process_frame(None, None, target_frame)
cv2.imwrite(output_path, result)
write_image(output_path, result)
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
frame_processors.process_video(None, temp_frame_paths, process_frames)
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)

View File

@ -0,0 +1,7 @@
from typing import List
from facefusion.uis.typing import WebcamMode
settings : List[str] = [ 'keep-fps', 'keep-temp', 'skip-audio' ]
webcam_mode : List[WebcamMode] = [ 'inline', 'stream_udp', 'stream_v4l2' ]
webcam_resolution : List[str] = [ '320x240', '640x480', '1280x720', '1920x1080', '2560x1440', '3840x2160' ]

View File

@ -9,5 +9,4 @@ ABOUT_HTML : Optional[gradio.HTML] = None
def render() -> None:
global ABOUT_HTML
with gradio.Box():
ABOUT_HTML = gradio.HTML('<center><a href="' + metadata.get('url') + '">' + metadata.get('name') + ' ' + metadata.get('version') + '</a></center>')
ABOUT_HTML = gradio.HTML('<center><a href="' + metadata.get('url') + '">' + metadata.get('name') + ' ' + metadata.get('version') + '</a></center>')

View File

@ -6,17 +6,19 @@ import gradio
import facefusion.globals
from facefusion import wording
from facefusion.face_analyser import get_face_analyser
from facefusion.face_cache import clear_faces_cache
from facefusion.processors.frame.core import get_frame_processors_modules
from facefusion.vision import count_video_frame_total
from facefusion.core import limit_resources, conditional_process
from facefusion.uis.typing import Update
from facefusion.uis import core as ui
from facefusion.utilities import normalize_output_path, clear_temp
BENCHMARK_RESULTS_DATAFRAME : Optional[gradio.Dataframe] = None
BENCHMARK_RUNS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
BENCHMARK_CYCLES_SLIDER : Optional[gradio.Button] = None
BENCHMARK_START_BUTTON : Optional[gradio.Button] = None
BENCHMARK_CLEAR_BUTTON : Optional[gradio.Button] = None
BENCHMARKS : Dict[str, str] = \
BENCHMARKS : Dict[str, str] =\
{
'240p': '.assets/examples/target-240p.mp4',
'360p': '.assets/examples/target-360p.mp4',
@ -30,77 +32,68 @@ BENCHMARKS : Dict[str, str] = \
def render() -> None:
global BENCHMARK_RESULTS_DATAFRAME
global BENCHMARK_RUNS_CHECKBOX_GROUP
global BENCHMARK_CYCLES_SLIDER
global BENCHMARK_START_BUTTON
global BENCHMARK_CLEAR_BUTTON
with gradio.Box():
BENCHMARK_RESULTS_DATAFRAME = gradio.Dataframe(
label = wording.get('benchmark_results_dataframe_label'),
headers =
[
'target_path',
'benchmark_cycles',
'average_run',
'fastest_run',
'slowest_run',
'relative_fps'
],
row_count = len(BENCHMARKS),
datatype =
[
'str',
'number',
'number',
'number',
'number',
'number'
]
)
with gradio.Box():
BENCHMARK_RUNS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('benchmark_runs_checkbox_group_label'),
value = list(BENCHMARKS.keys()),
choices = list(BENCHMARKS.keys())
)
BENCHMARK_CYCLES_SLIDER = gradio.Slider(
label = wording.get('benchmark_cycles_slider_label'),
minimum = 1,
step = 1,
value = 3,
maximum = 10
)
with gradio.Row():
BENCHMARK_START_BUTTON = gradio.Button(wording.get('start_button_label'))
BENCHMARK_CLEAR_BUTTON = gradio.Button(wording.get('clear_button_label'))
BENCHMARK_RESULTS_DATAFRAME = gradio.Dataframe(
label = wording.get('benchmark_results_dataframe_label'),
headers =
[
'target_path',
'benchmark_cycles',
'average_run',
'fastest_run',
'slowest_run',
'relative_fps'
],
datatype =
[
'str',
'number',
'number',
'number',
'number',
'number'
]
)
BENCHMARK_START_BUTTON = gradio.Button(
value = wording.get('start_button_label'),
variant = 'primary'
)
BENCHMARK_CLEAR_BUTTON = gradio.Button(
value = wording.get('clear_button_label')
)
def listen() -> None:
BENCHMARK_RUNS_CHECKBOX_GROUP.change(update_benchmark_runs, inputs = BENCHMARK_RUNS_CHECKBOX_GROUP, outputs = BENCHMARK_RUNS_CHECKBOX_GROUP)
BENCHMARK_START_BUTTON.click(start, inputs = [ BENCHMARK_RUNS_CHECKBOX_GROUP, BENCHMARK_CYCLES_SLIDER ], outputs = BENCHMARK_RESULTS_DATAFRAME)
benchmark_runs_checkbox_group = ui.get_component('benchmark_runs_checkbox_group')
benchmark_cycles_slider = ui.get_component('benchmark_cycles_slider')
if benchmark_runs_checkbox_group and benchmark_cycles_slider:
BENCHMARK_START_BUTTON.click(start, inputs = [ benchmark_runs_checkbox_group, benchmark_cycles_slider ], outputs = BENCHMARK_RESULTS_DATAFRAME)
BENCHMARK_CLEAR_BUTTON.click(clear, outputs = BENCHMARK_RESULTS_DATAFRAME)
def update_benchmark_runs(benchmark_runs : List[str]) -> Update:
return gradio.update(value = benchmark_runs)
def start(benchmark_runs : List[str], benchmark_cycles : int) -> Generator[List[Any], None, None]:
facefusion.globals.source_path = '.assets/examples/source.jpg'
target_paths = [ BENCHMARKS[benchmark_run] for benchmark_run in benchmark_runs if benchmark_run in BENCHMARKS ]
benchmark_results = []
if target_paths:
warm_up(BENCHMARKS['240p'])
pre_process()
for target_path in target_paths:
benchmark_results.append(benchmark(target_path, benchmark_cycles))
yield benchmark_results
post_process()
def warm_up(target_path : str) -> None:
facefusion.globals.target_path = target_path
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_path, facefusion.globals.target_path, tempfile.gettempdir())
conditional_process()
def pre_process() -> None:
limit_resources()
get_face_analyser()
for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
frame_processor_module.get_frame_processor()
def post_process() -> None:
clear_faces_cache()
def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]:
@ -111,7 +104,6 @@ def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]:
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_path, facefusion.globals.target_path, tempfile.gettempdir())
video_frame_total = count_video_frame_total(facefusion.globals.target_path)
start_time = time.perf_counter()
limit_resources()
conditional_process()
end_time = time.perf_counter()
process_time = end_time - start_time

View File

@ -0,0 +1,38 @@
from typing import Optional, List
import gradio
from facefusion import wording
from facefusion.uis.typing import Update
from facefusion.uis import core as ui
from facefusion.uis.components.benchmark import BENCHMARKS
BENCHMARK_RUNS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
BENCHMARK_CYCLES_SLIDER : Optional[gradio.Button] = None
def render() -> None:
global BENCHMARK_RUNS_CHECKBOX_GROUP
global BENCHMARK_CYCLES_SLIDER
BENCHMARK_RUNS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('benchmark_runs_checkbox_group_label'),
value = list(BENCHMARKS.keys()),
choices = list(BENCHMARKS.keys())
)
BENCHMARK_CYCLES_SLIDER = gradio.Slider(
label = wording.get('benchmark_cycles_slider_label'),
minimum = 1,
step = 1,
value = 3,
maximum = 10
)
ui.register_component('benchmark_runs_checkbox_group', BENCHMARK_RUNS_CHECKBOX_GROUP)
ui.register_component('benchmark_cycles_slider', BENCHMARK_CYCLES_SLIDER)
def listen() -> None:
BENCHMARK_RUNS_CHECKBOX_GROUP.change(update_benchmark_runs, inputs = BENCHMARK_RUNS_CHECKBOX_GROUP, outputs = BENCHMARK_RUNS_CHECKBOX_GROUP)
def update_benchmark_runs(benchmark_runs : List[str]) -> Update:
return gradio.update(value = benchmark_runs)

View File

@ -10,55 +10,26 @@ from facefusion.uis.typing import Update
from facefusion.utilities import encode_execution_providers, decode_execution_providers
EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
EXECUTION_THREAD_COUNT_SLIDER : Optional[gradio.Slider] = None
EXECUTION_QUEUE_COUNT_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global EXECUTION_PROVIDERS_CHECKBOX_GROUP
global EXECUTION_THREAD_COUNT_SLIDER
global EXECUTION_QUEUE_COUNT_SLIDER
with gradio.Box():
EXECUTION_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('execution_providers_checkbox_group_label'),
choices = encode_execution_providers(onnxruntime.get_available_providers()),
value = encode_execution_providers(facefusion.globals.execution_providers)
)
EXECUTION_THREAD_COUNT_SLIDER = gradio.Slider(
label = wording.get('execution_thread_count_slider_label'),
value = facefusion.globals.execution_thread_count,
step = 1,
minimum = 1,
maximum = 128
)
EXECUTION_QUEUE_COUNT_SLIDER = gradio.Slider(
label = wording.get('execution_queue_count_slider_label'),
value = facefusion.globals.execution_queue_count,
step = 1,
minimum = 1,
maximum = 16
)
EXECUTION_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('execution_providers_checkbox_group_label'),
choices = encode_execution_providers(onnxruntime.get_available_providers()),
value = encode_execution_providers(facefusion.globals.execution_providers)
)
def listen() -> None:
EXECUTION_PROVIDERS_CHECKBOX_GROUP.change(update_execution_providers, inputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP, outputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP)
EXECUTION_THREAD_COUNT_SLIDER.change(update_execution_thread_count, inputs = EXECUTION_THREAD_COUNT_SLIDER, outputs = EXECUTION_THREAD_COUNT_SLIDER)
EXECUTION_QUEUE_COUNT_SLIDER.change(update_execution_queue_count, inputs = EXECUTION_QUEUE_COUNT_SLIDER, outputs = EXECUTION_QUEUE_COUNT_SLIDER)
def update_execution_providers(execution_providers : List[str]) -> Update:
clear_face_analyser()
clear_frame_processors_modules()
if not execution_providers:
execution_providers = encode_execution_providers(onnxruntime.get_available_providers())
facefusion.globals.execution_providers = decode_execution_providers(execution_providers)
return gradio.update(value = execution_providers)
def update_execution_thread_count(execution_thread_count : int = 1) -> Update:
facefusion.globals.execution_thread_count = execution_thread_count
return gradio.update(value = execution_thread_count)
def update_execution_queue_count(execution_queue_count : int = 1) -> Update:
facefusion.globals.execution_queue_count = execution_queue_count
return gradio.update(value = execution_queue_count)

View File

@ -0,0 +1,29 @@
from typing import Optional
import gradio
import facefusion.globals
from facefusion import wording
from facefusion.uis.typing import Update
EXECUTION_QUEUE_COUNT_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global EXECUTION_QUEUE_COUNT_SLIDER
EXECUTION_QUEUE_COUNT_SLIDER = gradio.Slider(
label = wording.get('execution_queue_count_slider_label'),
value = facefusion.globals.execution_queue_count,
step = 1,
minimum = 1,
maximum = 16
)
def listen() -> None:
EXECUTION_QUEUE_COUNT_SLIDER.change(update_execution_queue_count, inputs = EXECUTION_QUEUE_COUNT_SLIDER, outputs = EXECUTION_QUEUE_COUNT_SLIDER)
def update_execution_queue_count(execution_queue_count : int = 1) -> Update:
facefusion.globals.execution_queue_count = execution_queue_count
return gradio.update(value = execution_queue_count)

View File

@ -0,0 +1,29 @@
from typing import Optional
import gradio
import facefusion.globals
from facefusion import wording
from facefusion.uis.typing import Update
EXECUTION_THREAD_COUNT_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global EXECUTION_THREAD_COUNT_SLIDER
EXECUTION_THREAD_COUNT_SLIDER = gradio.Slider(
label = wording.get('execution_thread_count_slider_label'),
value = facefusion.globals.execution_thread_count,
step = 1,
minimum = 1,
maximum = 128
)
def listen() -> None:
EXECUTION_THREAD_COUNT_SLIDER.change(update_execution_thread_count, inputs = EXECUTION_THREAD_COUNT_SLIDER, outputs = EXECUTION_THREAD_COUNT_SLIDER)
def update_execution_thread_count(execution_thread_count : int = 1) -> Update:
facefusion.globals.execution_thread_count = execution_thread_count
return gradio.update(value = execution_thread_count)

View File

@ -18,26 +18,24 @@ def render() -> None:
global FACE_ANALYSER_AGE_DROPDOWN
global FACE_ANALYSER_GENDER_DROPDOWN
with gradio.Box():
with gradio.Row():
FACE_ANALYSER_DIRECTION_DROPDOWN = gradio.Dropdown(
label = wording.get('face_analyser_direction_dropdown_label'),
choices = facefusion.choices.face_analyser_direction,
value = facefusion.globals.face_analyser_direction
)
FACE_ANALYSER_AGE_DROPDOWN = gradio.Dropdown(
label = wording.get('face_analyser_age_dropdown_label'),
choices = ['none'] + facefusion.choices.face_analyser_age,
value = facefusion.globals.face_analyser_age or 'none'
)
FACE_ANALYSER_GENDER_DROPDOWN = gradio.Dropdown(
label = wording.get('face_analyser_gender_dropdown_label'),
choices = ['none'] + facefusion.choices.face_analyser_gender,
value = facefusion.globals.face_analyser_gender or 'none'
)
ui.register_component('face_analyser_direction_dropdown', FACE_ANALYSER_DIRECTION_DROPDOWN)
ui.register_component('face_analyser_age_dropdown', FACE_ANALYSER_AGE_DROPDOWN)
ui.register_component('face_analyser_gender_dropdown', FACE_ANALYSER_GENDER_DROPDOWN)
FACE_ANALYSER_DIRECTION_DROPDOWN = gradio.Dropdown(
label = wording.get('face_analyser_direction_dropdown_label'),
choices = facefusion.choices.face_analyser_direction,
value = facefusion.globals.face_analyser_direction
)
FACE_ANALYSER_AGE_DROPDOWN = gradio.Dropdown(
label = wording.get('face_analyser_age_dropdown_label'),
choices = ['none'] + facefusion.choices.face_analyser_age,
value = facefusion.globals.face_analyser_age or 'none'
)
FACE_ANALYSER_GENDER_DROPDOWN = gradio.Dropdown(
label = wording.get('face_analyser_gender_dropdown_label'),
choices = ['none'] + facefusion.choices.face_analyser_gender,
value = facefusion.globals.face_analyser_gender or 'none'
)
ui.register_component('face_analyser_direction_dropdown', FACE_ANALYSER_DIRECTION_DROPDOWN)
ui.register_component('face_analyser_age_dropdown', FACE_ANALYSER_AGE_DROPDOWN)
ui.register_component('face_analyser_gender_dropdown', FACE_ANALYSER_GENDER_DROPDOWN)
def listen() -> None:

View File

@ -1,12 +1,11 @@
from typing import List, Optional, Tuple, Any, Dict
import cv2
import gradio
import facefusion.choices
import facefusion.globals
from facefusion import wording
from facefusion.vision import get_video_frame, normalize_frame_color
from facefusion.vision import get_video_frame, normalize_frame_color, read_static_image
from facefusion.face_analyser import get_many_faces
from facefusion.face_reference import clear_face_reference
from facefusion.typing import Frame, FaceRecognition
@ -24,38 +23,37 @@ def render() -> None:
global REFERENCE_FACE_POSITION_GALLERY
global REFERENCE_FACE_DISTANCE_SLIDER
with gradio.Box():
reference_face_gallery_args: Dict[str, Any] =\
{
'label': wording.get('reference_face_gallery_label'),
'height': 120,
'object_fit': 'cover',
'columns': 10,
'allow_preview': False,
'visible': 'reference' in facefusion.globals.face_recognition
}
if is_image(facefusion.globals.target_path):
reference_frame = cv2.imread(facefusion.globals.target_path)
reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
if is_video(facefusion.globals.target_path):
reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
FACE_RECOGNITION_DROPDOWN = gradio.Dropdown(
label = wording.get('face_recognition_dropdown_label'),
choices = facefusion.choices.face_recognition,
value = facefusion.globals.face_recognition
)
REFERENCE_FACE_POSITION_GALLERY = gradio.Gallery(**reference_face_gallery_args)
REFERENCE_FACE_DISTANCE_SLIDER = gradio.Slider(
label = wording.get('reference_face_distance_slider_label'),
value = facefusion.globals.reference_face_distance,
maximum = 3,
step = 0.05,
visible = 'reference' in facefusion.globals.face_recognition
)
ui.register_component('face_recognition_dropdown', FACE_RECOGNITION_DROPDOWN)
ui.register_component('reference_face_position_gallery', REFERENCE_FACE_POSITION_GALLERY)
ui.register_component('reference_face_distance_slider', REFERENCE_FACE_DISTANCE_SLIDER)
reference_face_gallery_args: Dict[str, Any] =\
{
'label': wording.get('reference_face_gallery_label'),
'height': 120,
'object_fit': 'cover',
'columns': 10,
'allow_preview': False,
'visible': 'reference' in facefusion.globals.face_recognition
}
if is_image(facefusion.globals.target_path):
reference_frame = read_static_image(facefusion.globals.target_path)
reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
if is_video(facefusion.globals.target_path):
reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
reference_face_gallery_args['value'] = extract_gallery_frames(reference_frame)
FACE_RECOGNITION_DROPDOWN = gradio.Dropdown(
label = wording.get('face_recognition_dropdown_label'),
choices = facefusion.choices.face_recognition,
value = facefusion.globals.face_recognition
)
REFERENCE_FACE_POSITION_GALLERY = gradio.Gallery(**reference_face_gallery_args)
REFERENCE_FACE_DISTANCE_SLIDER = gradio.Slider(
label = wording.get('reference_face_distance_slider_label'),
value = facefusion.globals.reference_face_distance,
maximum = 3,
step = 0.05,
visible = 'reference' in facefusion.globals.face_recognition
)
ui.register_component('face_recognition_dropdown', FACE_RECOGNITION_DROPDOWN)
ui.register_component('reference_face_position_gallery', REFERENCE_FACE_POSITION_GALLERY)
ui.register_component('reference_face_distance_slider', REFERENCE_FACE_DISTANCE_SLIDER)
def listen() -> None:
@ -106,7 +104,7 @@ def update_face_reference_position(reference_face_position : int = 0) -> Update:
gallery_frames = []
facefusion.globals.reference_face_position = reference_face_position
if is_image(facefusion.globals.target_path):
reference_frame = cv2.imread(facefusion.globals.target_path)
reference_frame = read_static_image(facefusion.globals.target_path)
gallery_frames = extract_gallery_frames(reference_frame)
if is_video(facefusion.globals.target_path):
reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)

View File

@ -11,13 +11,12 @@ MAX_MEMORY_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global MAX_MEMORY_SLIDER
with gradio.Box():
MAX_MEMORY_SLIDER = gradio.Slider(
label = wording.get('max_memory_slider_label'),
minimum = 0,
maximum = 128,
step = 1
)
MAX_MEMORY_SLIDER = gradio.Slider(
label = wording.get('max_memory_slider_label'),
minimum = 0,
maximum = 128,
step = 1
)
def listen() -> None:

View File

@ -22,23 +22,25 @@ def render() -> None:
global OUTPUT_START_BUTTON
global OUTPUT_CLEAR_BUTTON
with gradio.Row():
with gradio.Box():
OUTPUT_IMAGE = gradio.Image(
label = wording.get('output_image_or_video_label'),
visible = False
)
OUTPUT_VIDEO = gradio.Video(
label = wording.get('output_image_or_video_label')
)
OUTPUT_PATH_TEXTBOX = gradio.Textbox(
label = wording.get('output_path_textbox_label'),
value = facefusion.globals.output_path or tempfile.gettempdir(),
max_lines = 1
)
with gradio.Row():
OUTPUT_START_BUTTON = gradio.Button(wording.get('start_button_label'))
OUTPUT_CLEAR_BUTTON = gradio.Button(wording.get('clear_button_label'))
OUTPUT_IMAGE = gradio.Image(
label = wording.get('output_image_or_video_label'),
visible = False
)
OUTPUT_VIDEO = gradio.Video(
label = wording.get('output_image_or_video_label')
)
OUTPUT_PATH_TEXTBOX = gradio.Textbox(
label = wording.get('output_path_textbox_label'),
value = facefusion.globals.output_path or tempfile.gettempdir(),
max_lines = 1
)
OUTPUT_START_BUTTON = gradio.Button(
value = wording.get('start_button_label'),
variant = 'primary'
)
OUTPUT_CLEAR_BUTTON = gradio.Button(
value = wording.get('clear_button_label'),
)
def listen() -> None:

View File

@ -19,25 +19,24 @@ def render() -> None:
global OUTPUT_VIDEO_ENCODER_DROPDOWN
global OUTPUT_VIDEO_QUALITY_SLIDER
with gradio.Box():
OUTPUT_IMAGE_QUALITY_SLIDER = gradio.Slider(
label = wording.get('output_image_quality_slider_label'),
value = facefusion.globals.output_image_quality,
step = 1,
visible = is_image(facefusion.globals.target_path)
)
OUTPUT_VIDEO_ENCODER_DROPDOWN = gradio.Dropdown(
label = wording.get('output_video_encoder_dropdown_label'),
choices = facefusion.choices.output_video_encoder,
value = facefusion.globals.output_video_encoder,
visible = is_video(facefusion.globals.target_path)
)
OUTPUT_VIDEO_QUALITY_SLIDER = gradio.Slider(
label = wording.get('output_video_quality_slider_label'),
value = facefusion.globals.output_video_quality,
step = 1,
visible = is_video(facefusion.globals.target_path)
)
OUTPUT_IMAGE_QUALITY_SLIDER = gradio.Slider(
label = wording.get('output_image_quality_slider_label'),
value = facefusion.globals.output_image_quality,
step = 1,
visible = is_image(facefusion.globals.target_path)
)
OUTPUT_VIDEO_ENCODER_DROPDOWN = gradio.Dropdown(
label = wording.get('output_video_encoder_dropdown_label'),
choices = facefusion.choices.output_video_encoder,
value = facefusion.globals.output_video_encoder,
visible = is_video(facefusion.globals.target_path)
)
OUTPUT_VIDEO_QUALITY_SLIDER = gradio.Slider(
label = wording.get('output_video_quality_slider_label'),
value = facefusion.globals.output_video_quality,
step = 1,
visible = is_video(facefusion.globals.target_path)
)
def listen() -> None:

View File

@ -4,12 +4,12 @@ import gradio
import facefusion.globals
from facefusion import wording
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension, read_static_image
from facefusion.face_analyser import get_one_face
from facefusion.face_reference import get_face_reference, set_face_reference
from facefusion.predictor import predict_frame
from facefusion.processors.frame.core import load_frame_processor_module
from facefusion.typing import Frame
from facefusion.typing import Frame, Face
from facefusion.uis import core as ui
from facefusion.uis.typing import ComponentName, Update
from facefusion.utilities import is_video, is_image
@ -22,32 +22,34 @@ def render() -> None:
global PREVIEW_IMAGE
global PREVIEW_FRAME_SLIDER
with gradio.Box():
preview_image_args: Dict[str, Any] =\
{
'label': wording.get('preview_image_label')
}
preview_frame_slider_args: Dict[str, Any] =\
{
'label': wording.get('preview_frame_slider_label'),
'step': 1,
'visible': False
}
if is_image(facefusion.globals.target_path):
target_frame = cv2.imread(facefusion.globals.target_path)
preview_frame = process_preview_frame(target_frame)
preview_image_args['value'] = normalize_frame_color(preview_frame)
if is_video(facefusion.globals.target_path):
temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
preview_frame = process_preview_frame(temp_frame)
preview_image_args['value'] = normalize_frame_color(preview_frame)
preview_image_args['visible'] = True
preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number
preview_frame_slider_args['maximum'] = count_video_frame_total(facefusion.globals.target_path)
preview_frame_slider_args['visible'] = True
PREVIEW_IMAGE = gradio.Image(**preview_image_args)
PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args)
ui.register_component('preview_frame_slider', PREVIEW_FRAME_SLIDER)
preview_image_args: Dict[str, Any] =\
{
'label': wording.get('preview_image_label')
}
preview_frame_slider_args: Dict[str, Any] =\
{
'label': wording.get('preview_frame_slider_label'),
'step': 1,
'visible': False
}
conditional_set_face_reference()
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_recognition else None
if is_image(facefusion.globals.target_path):
target_frame = read_static_image(facefusion.globals.target_path)
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
preview_image_args['value'] = normalize_frame_color(preview_frame)
if is_video(facefusion.globals.target_path):
temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
preview_image_args['value'] = normalize_frame_color(preview_frame)
preview_image_args['visible'] = True
preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number
preview_frame_slider_args['maximum'] = count_video_frame_total(facefusion.globals.target_path)
preview_frame_slider_args['visible'] = True
PREVIEW_IMAGE = gradio.Image(**preview_image_args)
PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args)
ui.register_component('preview_frame_slider', PREVIEW_FRAME_SLIDER)
def listen() -> None:
@ -90,17 +92,18 @@ def listen() -> None:
def update_preview_image(frame_number : int = 0) -> Update:
conditional_set_face_reference()
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_recognition else None
if is_image(facefusion.globals.target_path):
conditional_set_face_reference()
target_frame = cv2.imread(facefusion.globals.target_path)
preview_frame = process_preview_frame(target_frame)
target_frame = read_static_image(facefusion.globals.target_path)
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
preview_frame = normalize_frame_color(preview_frame)
return gradio.update(value = preview_frame)
if is_video(facefusion.globals.target_path):
conditional_set_face_reference()
facefusion.globals.reference_frame_number = frame_number
temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
preview_frame = process_preview_frame(temp_frame)
preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
preview_frame = normalize_frame_color(preview_frame)
return gradio.update(value = preview_frame)
return gradio.update(value = None)
@ -116,11 +119,9 @@ def update_preview_frame_slider(frame_number : int = 0) -> Update:
return gradio.update(value = None, maximum = None, visible = False)
def process_preview_frame(temp_frame : Frame) -> Frame:
def process_preview_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
if predict_frame(temp_frame):
return cv2.GaussianBlur(temp_frame, (99, 99), 0)
source_face = get_one_face(cv2.imread(facefusion.globals.source_path)) if facefusion.globals.source_path else None
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_recognition else None
temp_frame = resize_frame_dimension(temp_frame, 480)
for frame_processor in facefusion.globals.frame_processors:
frame_processor_module = load_frame_processor_module(frame_processor)

View File

@ -14,13 +14,12 @@ FRAME_PROCESSORS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
def render() -> None:
global FRAME_PROCESSORS_CHECKBOX_GROUP
with gradio.Box():
FRAME_PROCESSORS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('frame_processors_checkbox_group_label'),
choices = sort_frame_processors(facefusion.globals.frame_processors),
value = facefusion.globals.frame_processors
)
ui.register_component('frame_processors_checkbox_group', FRAME_PROCESSORS_CHECKBOX_GROUP)
FRAME_PROCESSORS_CHECKBOX_GROUP = gradio.CheckboxGroup(
label = wording.get('frame_processors_checkbox_group_label'),
choices = sort_frame_processors(facefusion.globals.frame_processors),
value = facefusion.globals.frame_processors
)
ui.register_component('frame_processors_checkbox_group', FRAME_PROCESSORS_CHECKBOX_GROUP)
def listen() -> None:

View File

@ -1,41 +1,37 @@
from typing import Optional
from typing import Optional, List
import gradio
import facefusion.globals
from facefusion import wording
from facefusion.uis import choices
from facefusion.uis.typing import Update
KEEP_FPS_CHECKBOX : Optional[gradio.Checkbox] = None
KEEP_TEMP_CHECKBOX : Optional[gradio.Checkbox] = None
SKIP_AUDIO_CHECKBOX : Optional[gradio.Checkbox] = None
SETTINGS_CHECKBOX_GROUP : Optional[gradio.Checkboxgroup] = None
def render() -> None:
global KEEP_FPS_CHECKBOX
global KEEP_TEMP_CHECKBOX
global SKIP_AUDIO_CHECKBOX
global SETTINGS_CHECKBOX_GROUP
with gradio.Box():
KEEP_FPS_CHECKBOX = gradio.Checkbox(
label = wording.get('keep_fps_checkbox_label'),
value = facefusion.globals.keep_fps
)
KEEP_TEMP_CHECKBOX = gradio.Checkbox(
label = wording.get('keep_temp_checkbox_label'),
value = facefusion.globals.keep_temp
)
SKIP_AUDIO_CHECKBOX = gradio.Checkbox(
label = wording.get('skip_audio_checkbox_label'),
value = facefusion.globals.skip_audio
)
value = []
if facefusion.globals.keep_fps:
value.append('keep-fps')
if facefusion.globals.keep_temp:
value.append('keep-temp')
if facefusion.globals.skip_audio:
value.append('skip-audio')
SETTINGS_CHECKBOX_GROUP = gradio.Checkboxgroup(
label = wording.get('settings_checkbox_group_label'),
choices = choices.settings,
value = value
)
def listen() -> None:
KEEP_FPS_CHECKBOX.change(lambda value: update_checkbox('keep_fps', value), inputs = KEEP_FPS_CHECKBOX, outputs = KEEP_FPS_CHECKBOX)
KEEP_TEMP_CHECKBOX.change(lambda value: update_checkbox('keep_temp', value), inputs = KEEP_TEMP_CHECKBOX, outputs = KEEP_TEMP_CHECKBOX)
SKIP_AUDIO_CHECKBOX.change(lambda value: update_checkbox('skip_audio', value), inputs = SKIP_AUDIO_CHECKBOX, outputs = SKIP_AUDIO_CHECKBOX)
SETTINGS_CHECKBOX_GROUP.change(update, inputs = SETTINGS_CHECKBOX_GROUP, outputs = SETTINGS_CHECKBOX_GROUP)
def update_checkbox(name : str, value: bool) -> Update:
setattr(facefusion.globals, name, value)
return gradio.update(value = value)
def update(settings : List[str]) -> Update:
facefusion.globals.keep_fps = 'keep-fps' in settings
facefusion.globals.keep_temp = 'keep-temp' in settings
facefusion.globals.skip_audio = 'skip-audio' in settings
return gradio.update(value = settings)

View File

@ -15,25 +15,24 @@ def render() -> None:
global SOURCE_FILE
global SOURCE_IMAGE
with gradio.Box():
is_source_image = is_image(facefusion.globals.source_path)
SOURCE_FILE = gradio.File(
file_count = 'single',
file_types =
[
'.png',
'.jpg',
'.webp'
],
label = wording.get('source_file_label'),
value = facefusion.globals.source_path if is_source_image else None
)
SOURCE_IMAGE = gradio.Image(
value = SOURCE_FILE.value['name'] if is_source_image else None,
visible = is_source_image,
show_label = False
)
ui.register_component('source_image', SOURCE_IMAGE)
is_source_image = is_image(facefusion.globals.source_path)
SOURCE_FILE = gradio.File(
file_count = 'single',
file_types =
[
'.png',
'.jpg',
'.webp'
],
label = wording.get('source_file_label'),
value = facefusion.globals.source_path if is_source_image else None
)
SOURCE_IMAGE = gradio.Image(
value = SOURCE_FILE.value['name'] if is_source_image else None,
visible = is_source_image,
show_label = False
)
ui.register_component('source_image', SOURCE_IMAGE)
def listen() -> None:

View File

@ -18,33 +18,32 @@ def render() -> None:
global TARGET_IMAGE
global TARGET_VIDEO
with gradio.Box():
is_target_image = is_image(facefusion.globals.target_path)
is_target_video = is_video(facefusion.globals.target_path)
TARGET_FILE = gradio.File(
label = wording.get('target_file_label'),
file_count = 'single',
file_types =
[
'.png',
'.jpg',
'.webp',
'.mp4'
],
value = facefusion.globals.target_path if is_target_image or is_target_video else None
)
TARGET_IMAGE = gradio.Image(
value = TARGET_FILE.value['name'] if is_target_image else None,
visible = is_target_image,
show_label = False
)
TARGET_VIDEO = gradio.Video(
value = TARGET_FILE.value['name'] if is_target_video else None,
visible = is_target_video,
show_label = False
)
ui.register_component('target_image', TARGET_IMAGE)
ui.register_component('target_video', TARGET_VIDEO)
is_target_image = is_image(facefusion.globals.target_path)
is_target_video = is_video(facefusion.globals.target_path)
TARGET_FILE = gradio.File(
label = wording.get('target_file_label'),
file_count = 'single',
file_types =
[
'.png',
'.jpg',
'.webp',
'.mp4'
],
value = facefusion.globals.target_path if is_target_image or is_target_video else None
)
TARGET_IMAGE = gradio.Image(
value = TARGET_FILE.value['name'] if is_target_image else None,
visible = is_target_image,
show_label = False
)
TARGET_VIDEO = gradio.Video(
value = TARGET_FILE.value['name'] if is_target_video else None,
visible = is_target_video,
show_label = False
)
ui.register_component('target_image', TARGET_IMAGE)
ui.register_component('target_video', TARGET_VIDEO)
def listen() -> None:

View File

@ -17,19 +17,18 @@ def render() -> None:
global TEMP_FRAME_FORMAT_DROPDOWN
global TEMP_FRAME_QUALITY_SLIDER
with gradio.Box():
TEMP_FRAME_FORMAT_DROPDOWN = gradio.Dropdown(
label = wording.get('temp_frame_format_dropdown_label'),
choices = facefusion.choices.temp_frame_format,
value = facefusion.globals.temp_frame_format,
visible = is_video(facefusion.globals.target_path)
)
TEMP_FRAME_QUALITY_SLIDER = gradio.Slider(
label = wording.get('temp_frame_quality_slider_label'),
value = facefusion.globals.temp_frame_quality,
step = 1,
visible = is_video(facefusion.globals.target_path)
)
TEMP_FRAME_FORMAT_DROPDOWN = gradio.Dropdown(
label = wording.get('temp_frame_format_dropdown_label'),
choices = facefusion.choices.temp_frame_format,
value = facefusion.globals.temp_frame_format,
visible = is_video(facefusion.globals.target_path)
)
TEMP_FRAME_QUALITY_SLIDER = gradio.Slider(
label = wording.get('temp_frame_quality_slider_label'),
value = facefusion.globals.temp_frame_quality,
step = 1,
visible = is_video(facefusion.globals.target_path)
)
def listen() -> None:

View File

@ -16,30 +16,28 @@ def render() -> None:
global TRIM_FRAME_START_SLIDER
global TRIM_FRAME_END_SLIDER
with gradio.Box():
trim_frame_start_slider_args : Dict[str, Any] =\
{
'label': wording.get('trim_frame_start_slider_label'),
'step': 1,
'visible': False
}
trim_frame_end_slider_args : Dict[str, Any] =\
{
'label': wording.get('trim_frame_end_slider_label'),
'step': 1,
'visible': False
}
if is_video(facefusion.globals.target_path):
video_frame_total = count_video_frame_total(facefusion.globals.target_path)
trim_frame_start_slider_args['value'] = facefusion.globals.trim_frame_start or 0
trim_frame_start_slider_args['maximum'] = video_frame_total
trim_frame_start_slider_args['visible'] = True
trim_frame_end_slider_args['value'] = facefusion.globals.trim_frame_end or video_frame_total
trim_frame_end_slider_args['maximum'] = video_frame_total
trim_frame_end_slider_args['visible'] = True
with gradio.Row():
TRIM_FRAME_START_SLIDER = gradio.Slider(**trim_frame_start_slider_args)
TRIM_FRAME_END_SLIDER = gradio.Slider(**trim_frame_end_slider_args)
trim_frame_start_slider_args : Dict[str, Any] =\
{
'label': wording.get('trim_frame_start_slider_label'),
'step': 1,
'visible': False
}
trim_frame_end_slider_args : Dict[str, Any] =\
{
'label': wording.get('trim_frame_end_slider_label'),
'step': 1,
'visible': False
}
if is_video(facefusion.globals.target_path):
video_frame_total = count_video_frame_total(facefusion.globals.target_path)
trim_frame_start_slider_args['value'] = facefusion.globals.trim_frame_start or 0
trim_frame_start_slider_args['maximum'] = video_frame_total
trim_frame_start_slider_args['visible'] = True
trim_frame_end_slider_args['value'] = facefusion.globals.trim_frame_end or video_frame_total
trim_frame_end_slider_args['maximum'] = video_frame_total
trim_frame_end_slider_args['visible'] = True
TRIM_FRAME_START_SLIDER = gradio.Slider(**trim_frame_start_slider_args)
TRIM_FRAME_END_SLIDER = gradio.Slider(**trim_frame_end_slider_args)
def listen() -> None:

View File

@ -1,87 +1,114 @@
from typing import Optional, Generator
from typing import Optional, Generator, Deque
from concurrent.futures import ThreadPoolExecutor
from collections import deque
import os
import platform
import subprocess
import cv2
import gradio
from tqdm import tqdm
import facefusion.globals
from facefusion import wording
from facefusion.typing import Frame
from facefusion.typing import Frame, Face
from facefusion.face_analyser import get_one_face
from facefusion.processors.frame.core import load_frame_processor_module
from facefusion.uis import core as ui
from facefusion.uis.typing import StreamMode, WebcamMode, Update
from facefusion.utilities import open_ffmpeg
from facefusion.vision import normalize_frame_color
from facefusion.vision import normalize_frame_color, read_static_image
WEBCAM_IMAGE : Optional[gradio.Image] = None
WEBCAM_MODE_RADIO : Optional[gradio.Radio] = None
WEBCAM_START_BUTTON : Optional[gradio.Button] = None
WEBCAM_STOP_BUTTON : Optional[gradio.Button] = None
def render() -> None:
global WEBCAM_IMAGE
global WEBCAM_MODE_RADIO
global WEBCAM_START_BUTTON
global WEBCAM_STOP_BUTTON
WEBCAM_IMAGE = gradio.Image(
label = wording.get('webcam_image_label')
)
WEBCAM_MODE_RADIO = gradio.Radio(
label = wording.get('webcam_mode_radio_label'),
choices = [ 'inline', 'stream_udp', 'stream_v4l2' ],
value = 'inline'
WEBCAM_START_BUTTON = gradio.Button(
value = wording.get('start_button_label'),
variant = 'primary'
)
WEBCAM_STOP_BUTTON = gradio.Button(
value = wording.get('stop_button_label')
)
WEBCAM_START_BUTTON = gradio.Button(wording.get('start_button_label'))
WEBCAM_STOP_BUTTON = gradio.Button(wording.get('stop_button_label'))
def listen() -> None:
start_event = WEBCAM_START_BUTTON.click(start, inputs = WEBCAM_MODE_RADIO, outputs = WEBCAM_IMAGE)
WEBCAM_MODE_RADIO.change(update, outputs = WEBCAM_IMAGE, cancels = start_event)
WEBCAM_STOP_BUTTON.click(None, cancels = start_event)
start_event = None
webcam_mode_radio = ui.get_component('webcam_mode_radio')
webcam_resolution_dropdown = ui.get_component('webcam_resolution_dropdown')
webcam_fps_slider = ui.get_component('webcam_fps_slider')
if webcam_mode_radio and webcam_resolution_dropdown and webcam_fps_slider:
start_event = WEBCAM_START_BUTTON.click(start, inputs = [ webcam_mode_radio, webcam_resolution_dropdown, webcam_fps_slider ], outputs = WEBCAM_IMAGE)
webcam_mode_radio.change(stop, outputs = WEBCAM_IMAGE, cancels = start_event)
webcam_resolution_dropdown.change(stop, outputs = WEBCAM_IMAGE, cancels = start_event)
webcam_fps_slider.change(stop, outputs = WEBCAM_IMAGE, cancels = start_event)
WEBCAM_STOP_BUTTON.click(stop, cancels = start_event)
source_image = ui.get_component('source_image')
if source_image:
for method in [ 'upload', 'change', 'clear' ]:
getattr(source_image, method)(stop, cancels = start_event)
def update() -> Update:
def start(mode: WebcamMode, resolution: str, fps: float) -> Generator[Frame, None, None]:
facefusion.globals.face_recognition = 'many'
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
stream = None
if mode == 'stream_udp':
stream = open_stream('udp', resolution, fps)
if mode == 'stream_v4l2':
stream = open_stream('v4l2', resolution, fps)
capture = capture_webcam(resolution, fps)
if capture.isOpened():
for capture_frame in multi_process_capture(source_face, capture):
if stream is not None:
stream.stdin.write(capture_frame.tobytes())
yield normalize_frame_color(capture_frame)
def multi_process_capture(source_face: Face, capture : cv2.VideoCapture) -> Generator[Frame, None, None]:
progress = tqdm(desc = wording.get('processing'), unit = 'frame', dynamic_ncols = True)
with ThreadPoolExecutor(max_workers = facefusion.globals.execution_thread_count) as executor:
futures = []
deque_capture_frames : Deque[Frame] = deque()
while True:
_, capture_frame = capture.read()
future = executor.submit(process_stream_frame, source_face, capture_frame)
futures.append(future)
for future_done in [ future for future in futures if future.done() ]:
capture_frame = future_done.result()
deque_capture_frames.append(capture_frame)
futures.remove(future_done)
while deque_capture_frames:
yield deque_capture_frames.popleft()
progress.update()
def stop() -> Update:
return gradio.update(value = None)
def start(webcam_mode : WebcamMode) -> Generator[Frame, None, None]:
if webcam_mode == 'inline':
yield from start_inline()
if webcam_mode == 'stream_udp':
yield from start_stream('udp')
if webcam_mode == 'stream_v4l2':
yield from start_stream('v4l2')
def capture_webcam(resolution : str, fps : float) -> cv2.VideoCapture:
width, height = resolution.split('x')
if platform.system().lower() == 'windows':
capture = cv2.VideoCapture(0, cv2.CAP_DSHOW)
else:
capture = cv2.VideoCapture(0)
capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) # type: ignore[attr-defined]
capture.set(cv2.CAP_PROP_FRAME_WIDTH, int(width))
capture.set(cv2.CAP_PROP_FRAME_HEIGHT, int(height))
capture.set(cv2.CAP_PROP_FPS, fps)
return capture
def start_inline() -> Generator[Frame, None, None]:
facefusion.globals.face_recognition = 'many'
capture = cv2.VideoCapture(0)
if capture.isOpened():
while True:
_, temp_frame = capture.read()
temp_frame = process_stream_frame(temp_frame)
if temp_frame is not None:
yield normalize_frame_color(temp_frame)
def start_stream(mode : StreamMode) -> Generator[None, None, None]:
facefusion.globals.face_recognition = 'many'
capture = cv2.VideoCapture(0)
ffmpeg_process = open_stream(mode)
if capture.isOpened():
while True:
_, frame = capture.read()
temp_frame = process_stream_frame(frame)
if temp_frame is not None:
ffmpeg_process.stdin.write(temp_frame.tobytes())
yield normalize_frame_color(temp_frame)
def process_stream_frame(temp_frame : Frame) -> Frame:
source_face = get_one_face(cv2.imread(facefusion.globals.source_path)) if facefusion.globals.source_path else None
def process_stream_frame(source_face : Face, temp_frame : Frame) -> Frame:
for frame_processor in facefusion.globals.frame_processors:
frame_processor_module = load_frame_processor_module(frame_processor)
if frame_processor_module.pre_process('stream'):
@ -93,8 +120,8 @@ def process_stream_frame(temp_frame : Frame) -> Frame:
return temp_frame
def open_stream(mode : StreamMode) -> subprocess.Popen[bytes]:
commands = [ '-f', 'rawvideo', '-pix_fmt', 'bgr24', '-s', '640x480', '-r', '30', '-i', '-' ]
def open_stream(mode : StreamMode, resolution : str, fps : float) -> subprocess.Popen[bytes]:
commands = [ '-f', 'rawvideo', '-pix_fmt', 'bgr24', '-s', resolution, '-r', str(fps), '-i', '-' ]
if mode == 'udp':
commands.extend([ '-b:v', '2000k', '-f', 'mpegts', 'udp://localhost:27000?pkt_size=1316' ])
if mode == 'v4l2':

View File

@ -0,0 +1,42 @@
from typing import Optional
import gradio
from facefusion import wording
from facefusion.uis import choices
from facefusion.uis import core as ui
from facefusion.uis.typing import Update
WEBCAM_MODE_RADIO : Optional[gradio.Radio] = None
WEBCAM_RESOLUTION_DROPDOWN : Optional[gradio.Dropdown] = None
WEBCAM_FPS_SLIDER : Optional[gradio.Slider] = None
def render() -> None:
global WEBCAM_MODE_RADIO
global WEBCAM_RESOLUTION_DROPDOWN
global WEBCAM_FPS_SLIDER
WEBCAM_MODE_RADIO = gradio.Radio(
label = wording.get('webcam_mode_radio_label'),
choices = choices.webcam_mode,
value = 'inline'
)
WEBCAM_RESOLUTION_DROPDOWN = gradio.Dropdown(
label = wording.get('webcam_resolution_dropdown'),
choices = choices.webcam_resolution,
value = choices.webcam_resolution[0]
)
WEBCAM_FPS_SLIDER = gradio.Slider(
label = wording.get('webcam_fps_slider'),
minimum = 1,
maximum = 60,
step = 1,
value = 25
)
ui.register_component('webcam_mode_radio', WEBCAM_MODE_RADIO)
ui.register_component('webcam_resolution_dropdown', WEBCAM_RESOLUTION_DROPDOWN)
ui.register_component('webcam_fps_slider', WEBCAM_FPS_SLIDER)
def update() -> Update:
return gradio.update(value = None)

View File

@ -1,6 +1,6 @@
import gradio
from facefusion.uis.components import about, processors, execution, limit_resources, benchmark
from facefusion.uis.components import about, processors, execution, execution_thread_count, execution_queue_count, limit_resources, benchmark_settings, benchmark
from facefusion.utilities import conditional_download
@ -27,19 +27,31 @@ def render() -> gradio.Blocks:
with gradio.Blocks() as layout:
with gradio.Row():
with gradio.Column(scale = 2):
about.render()
processors.render()
execution.render()
limit_resources.render()
with gradio.Box():
about.render()
with gradio.Blocks():
processors.render()
with gradio.Blocks():
execution.render()
execution_thread_count.render()
execution_queue_count.render()
with gradio.Blocks():
limit_resources.render()
with gradio.Blocks():
benchmark_settings.render()
with gradio.Column(scale= 5):
benchmark.render()
with gradio.Blocks():
benchmark.render()
return layout
def listen() -> None:
processors.listen()
execution.listen()
execution_thread_count.listen()
execution_queue_count.listen()
limit_resources.listen()
benchmark_settings.listen()
benchmark.listen()

View File

@ -1,6 +1,6 @@
import gradio
from facefusion.uis.components import about, processors, execution, limit_resources, temp_frame, output_settings, settings, source, target, preview, trim_frame, face_analyser, face_selector, output
from facefusion.uis.components import about, processors, execution, execution_thread_count, execution_queue_count, limit_resources, temp_frame, output_settings, settings, source, target, preview, trim_frame, face_analyser, face_selector, output
def pre_check() -> bool:
@ -15,28 +15,46 @@ def render() -> gradio.Blocks:
with gradio.Blocks() as layout:
with gradio.Row():
with gradio.Column(scale = 2):
about.render()
processors.render()
execution.render()
limit_resources.render()
temp_frame.render()
output_settings.render()
settings.render()
with gradio.Box():
about.render()
with gradio.Blocks():
processors.render()
with gradio.Blocks():
execution.render()
execution_thread_count.render()
execution_queue_count.render()
with gradio.Blocks():
limit_resources.render()
with gradio.Blocks():
temp_frame.render()
with gradio.Blocks():
output_settings.render()
with gradio.Blocks():
settings.render()
with gradio.Column(scale = 2):
source.render()
target.render()
output.render()
with gradio.Blocks():
source.render()
with gradio.Blocks():
target.render()
with gradio.Blocks():
output.render()
with gradio.Column(scale = 3):
preview.render()
trim_frame.render()
face_selector.render()
face_analyser.render()
with gradio.Blocks():
preview.render()
with gradio.Row():
trim_frame.render()
with gradio.Blocks():
face_selector.render()
with gradio.Row():
face_analyser.render()
return layout
def listen() -> None:
processors.listen()
execution.listen()
execution_thread_count.listen()
execution_queue_count.listen()
limit_resources.listen()
temp_frame.listen()
output_settings.listen()

View File

@ -1,6 +1,6 @@
import gradio
from facefusion.uis.components import about, processors, execution, limit_resources, source, webcam
from facefusion.uis.components import about, processors, execution, execution_thread_count, webcam_settings, source, webcam
def pre_check() -> bool:
@ -15,20 +15,27 @@ def render() -> gradio.Blocks:
with gradio.Blocks() as layout:
with gradio.Row():
with gradio.Column(scale = 2):
about.render()
processors.render()
execution.render()
limit_resources.render()
source.render()
with gradio.Box():
about.render()
with gradio.Blocks():
processors.render()
with gradio.Blocks():
execution.render()
execution_thread_count.render()
with gradio.Blocks():
webcam_settings.render()
with gradio.Blocks():
source.render()
with gradio.Column(scale = 5):
webcam.render()
with gradio.Blocks():
webcam.render()
return layout
def listen() -> None:
processors.listen()
execution.listen()
limit_resources.listen()
execution_thread_count.listen()
source.listen()
webcam.listen()

View File

@ -14,8 +14,13 @@ ComponentName = Literal\
'face_analyser_direction_dropdown',
'face_analyser_age_dropdown',
'face_analyser_gender_dropdown',
'frame_processors_checkbox_group'
'frame_processors_checkbox_group',
'benchmark_runs_checkbox_group',
'benchmark_cycles_slider',
'webcam_mode_radio',
'webcam_resolution_dropdown',
'webcam_fps_slider'
]
WebcamMode = Literal[ 'inline', 'stream_udp', 'stream_v4l2' ]
StreamMode = Literal['udp', 'v4l2']
StreamMode = Literal[ 'udp', 'v4l2' ]
Update = Dict[Any, Any]

View File

@ -1,4 +1,3 @@
import json
from typing import List, Optional
from pathlib import Path
from tqdm import tqdm
@ -15,9 +14,10 @@ import onnxruntime
import facefusion.globals
from facefusion import wording
from facefusion.vision import detect_fps
TEMP_DIRECTORY_PATH = os.path.join(tempfile.gettempdir(), 'facefusion')
TEMP_OUTPUT_NAME = 'temp.mp4'
TEMP_OUTPUT_VIDEO_NAME = 'temp.mp4'
# monkey patch ssl
if platform.system().lower() == 'darwin':
@ -40,24 +40,11 @@ def open_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
return subprocess.Popen(commands, stdin = subprocess.PIPE)
def detect_fps(target_path : str) -> Optional[float]:
commands = [ 'ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=r_frame_rate', '-of', 'json', target_path ]
output = subprocess.check_output(commands).decode().strip()
try:
entries = json.loads(output)
for stream in entries.get('streams'):
numerator, denominator = map(int, stream.get('r_frame_rate').split('/'))
return numerator / denominator
return None
except (ValueError, ZeroDivisionError):
return None
def extract_frames(target_path : str, fps : float) -> bool:
temp_directory_path = get_temp_directory_path(target_path)
temp_frame_compression = round(31 - (facefusion.globals.temp_frame_quality * 0.31))
trim_frame_start = facefusion.globals.trim_frame_start
trim_frame_end = facefusion.globals.trim_frame_end
temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
commands = [ '-hwaccel', 'auto', '-i', target_path, '-q:v', str(temp_frame_compression), '-pix_fmt', 'rgb24' ]
if trim_frame_start is not None and trim_frame_end is not None:
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
@ -67,7 +54,7 @@ def extract_frames(target_path : str, fps : float) -> bool:
commands.extend([ '-vf', 'trim=end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
else:
commands.extend([ '-vf', 'fps=' + str(fps) ])
commands.extend([os.path.join(temp_directory_path, '%04d.' + facefusion.globals.temp_frame_format)])
commands.extend([ '-vsync', '0', temp_frames_pattern ])
return run_ffmpeg(commands)
@ -78,19 +65,19 @@ def compress_image(output_path : str) -> bool:
def merge_video(target_path : str, fps : float) -> bool:
temp_output_path = get_temp_output_path(target_path)
temp_directory_path = get_temp_directory_path(target_path)
commands = [ '-hwaccel', 'auto', '-r', str(fps), '-i', os.path.join(temp_directory_path, '%04d.' + facefusion.globals.temp_frame_format), '-c:v', facefusion.globals.output_video_encoder ]
temp_output_video_path = get_temp_output_video_path(target_path)
temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
commands = [ '-hwaccel', 'auto', '-r', str(fps), '-i', temp_frames_pattern, '-c:v', facefusion.globals.output_video_encoder ]
if facefusion.globals.output_video_encoder in [ 'libx264', 'libx265' ]:
output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.5))
commands.extend([ '-crf', str(output_video_compression) ])
if facefusion.globals.output_video_encoder in [ 'libvpx' ]:
if facefusion.globals.output_video_encoder in [ 'libvpx-vp9' ]:
output_video_compression = round(63 - (facefusion.globals.output_video_quality * 0.5))
commands.extend([ '-crf', str(output_video_compression) ])
if facefusion.globals.output_video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.5))
commands.extend([ '-cq', str(output_video_compression) ])
commands.extend([ '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625', '-y', temp_output_path ])
commands.extend([ '-pix_fmt', 'yuv420p', '-colorspace', 'bt709', '-y', temp_output_video_path ])
return run_ffmpeg(commands)
@ -98,27 +85,26 @@ def restore_audio(target_path : str, output_path : str) -> bool:
fps = detect_fps(target_path)
trim_frame_start = facefusion.globals.trim_frame_start
trim_frame_end = facefusion.globals.trim_frame_end
temp_output_path = get_temp_output_path(target_path)
commands = [ '-hwaccel', 'auto', '-i', temp_output_path, '-i', target_path ]
if trim_frame_start is None and trim_frame_end is None:
commands.extend([ '-c:a', 'copy' ])
else:
if trim_frame_start is not None:
start_time = trim_frame_start / fps
commands.extend([ '-ss', str(start_time) ])
else:
commands.extend([ '-ss', '0' ])
if trim_frame_end is not None:
end_time = trim_frame_end / fps
commands.extend([ '-to', str(end_time) ])
commands.extend([ '-c:a', 'aac' ])
commands.extend([ '-map', '0:v:0', '-map', '1:a:0', '-y', output_path ])
temp_output_video_path = get_temp_output_video_path(target_path)
commands = [ '-hwaccel', 'auto', '-i', temp_output_video_path ]
if trim_frame_start is not None:
start_time = trim_frame_start / fps
commands.extend([ '-ss', str(start_time) ])
if trim_frame_end is not None:
end_time = trim_frame_end / fps
commands.extend([ '-to', str(end_time) ])
commands.extend([ '-i', target_path, '-c', 'copy', '-map', '0:v:0', '-map', '1:a:0', '-shortest', '-y', output_path ])
return run_ffmpeg(commands)
def get_temp_frame_paths(target_path : str) -> List[str]:
temp_frames_pattern = get_temp_frames_pattern(target_path, '*')
return sorted(glob.glob(temp_frames_pattern))
def get_temp_frames_pattern(target_path : str, temp_frame_prefix : str) -> str:
temp_directory_path = get_temp_directory_path(target_path)
return glob.glob((os.path.join(glob.escape(temp_directory_path), '*.' + facefusion.globals.temp_frame_format)))
return os.path.join(temp_directory_path, temp_frame_prefix + '.' + facefusion.globals.temp_frame_format)
def get_temp_directory_path(target_path : str) -> str:
@ -126,9 +112,9 @@ def get_temp_directory_path(target_path : str) -> str:
return os.path.join(TEMP_DIRECTORY_PATH, target_name)
def get_temp_output_path(target_path : str) -> str:
def get_temp_output_video_path(target_path : str) -> str:
temp_directory_path = get_temp_directory_path(target_path)
return os.path.join(temp_directory_path, TEMP_OUTPUT_NAME)
return os.path.join(temp_directory_path, TEMP_OUTPUT_VIDEO_NAME)
def normalize_output_path(source_path : Optional[str], target_path : Optional[str], output_path : Optional[str]) -> Optional[str]:
@ -152,11 +138,11 @@ def create_temp(target_path : str) -> None:
def move_temp(target_path : str, output_path : str) -> None:
temp_output_path = get_temp_output_path(target_path)
if is_file(temp_output_path):
temp_output_video_path = get_temp_output_video_path(target_path)
if is_file(temp_output_video_path):
if is_file(output_path):
os.remove(output_path)
shutil.move(temp_output_path, output_path)
shutil.move(temp_output_video_path, output_path)
def clear_temp(target_path : str) -> None:
@ -191,15 +177,29 @@ def is_video(video_path : str) -> bool:
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
if not os.path.exists(download_directory_path):
os.makedirs(download_directory_path)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
if not os.path.exists(download_file_path):
request = urllib.request.urlopen(url) # type: ignore[attr-defined]
total = int(request.headers.get('Content-Length', 0))
with tqdm(total = total, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024) as progress:
urllib.request.urlretrieve(url, download_file_path, reporthook = lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined]
total = get_download_size(url)
if is_file(download_file_path):
initial = os.path.getsize(download_file_path)
else:
initial = 0
if initial < total:
with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024) as progress:
subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--location', '--continue-at', '-', '--output', download_file_path, url ])
current = initial
while current < total:
if is_file(download_file_path):
current = os.path.getsize(download_file_path)
progress.update(current - progress.n)
def get_download_size(url : str) -> int:
response = urllib.request.urlopen(url) # type: ignore[attr-defined]
content_length = response.getheader('Content-Length')
if content_length:
return int(content_length)
return 0
def resolve_relative_path(path : str) -> str:

View File

@ -1,27 +1,38 @@
from typing import Optional
from functools import lru_cache
import cv2
from facefusion.typing import Frame
def get_video_frame(video_path : str, frame_number : int = 0) -> Optional[Frame]:
capture = cv2.VideoCapture(video_path)
if capture.isOpened():
frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
has_frame, frame = capture.read()
capture.release()
if has_frame:
return frame
if video_path:
capture = cv2.VideoCapture(video_path)
if capture.isOpened():
frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
has_frame, frame = capture.read()
capture.release()
if has_frame:
return frame
return None
def detect_fps(video_path : str) -> Optional[float]:
if video_path:
capture = cv2.VideoCapture(video_path)
if capture.isOpened():
return capture.get(cv2.CAP_PROP_FPS)
return None
def count_video_frame_total(video_path : str) -> int:
capture = cv2.VideoCapture(video_path)
if capture.isOpened():
video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
capture.release()
return video_frame_total
if video_path:
capture = cv2.VideoCapture(video_path)
if capture.isOpened():
video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
capture.release()
return video_frame_total
return 0
@ -36,3 +47,20 @@ def resize_frame_dimension(frame : Frame, max_height : int) -> Frame:
max_width = int(width * scale)
frame = cv2.resize(frame, (max_width, max_height))
return frame
@lru_cache(maxsize = 128)
def read_static_image(image_path : str) -> Optional[Frame]:
return read_image(image_path)
def read_image(image_path : str) -> Optional[Frame]:
if image_path:
return cv2.imread(image_path)
return None
def write_image(image_path : str, frame : Frame) -> bool:
if image_path:
return cv2.imwrite(image_path, frame)
return False

View File

@ -1,8 +1,8 @@
WORDING =\
{
'select_onnxruntime_install': 'Select the onnxruntime to be installed',
'python_not_supported': 'Python version is not supported, upgrade to {version} or higher',
'ffmpeg_not_installed': 'FFMpeg is not installed',
'onnxruntime_help': 'select the onnxruntime to be installed',
'source_help': 'select a source image',
'target_help': 'select a target image or video',
'output_help': 'specify the output file or directory',
@ -79,9 +79,7 @@ WORDING =\
'preview_image_label': 'PREVIEW',
'preview_frame_slider_label': 'PREVIEW FRAME',
'frame_processors_checkbox_group_label': 'FRAME PROCESSORS',
'keep_fps_checkbox_label': 'KEEP FPS',
'keep_temp_checkbox_label': 'KEEP TEMP',
'skip_audio_checkbox_label': 'SKIP AUDIO',
'settings_checkbox_group_label': 'SETTINGS',
'temp_frame_format_dropdown_label': 'TEMP FRAME FORMAT',
'temp_frame_quality_slider_label': 'TEMP FRAME QUALITY',
'trim_frame_start_slider_label': 'TRIM FRAME START',
@ -90,6 +88,8 @@ WORDING =\
'target_file_label': 'TARGET',
'webcam_image_label': 'WEBCAM',
'webcam_mode_radio_label': 'WEBCAM MODE',
'webcam_resolution_dropdown': 'WEBCAM RESOLUTION',
'webcam_fps_slider': 'WEBCAM FPS',
'point': '.',
'comma': ',',
'colon': ':',

View File

@ -1,5 +1,5 @@
gfpgan==1.3.8
gradio==3.42.0
gradio==3.44.3
insightface==0.7.3
numpy==1.24.3
onnx==1.14.1

View File

@ -1,4 +1,5 @@
import subprocess
import sys
import pytest
from facefusion import wording
@ -16,7 +17,7 @@ def before_all() -> None:
def test_image_to_image() -> None:
commands = [ 'python', 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.jpg', '-o', '.assets/examples', '--headless' ]
commands = [ sys.executable, 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.jpg', '-o', '.assets/examples', '--headless' ]
run = subprocess.run(commands, stdout = subprocess.PIPE)
assert run.returncode == 0
@ -24,7 +25,7 @@ def test_image_to_image() -> None:
def test_image_to_video() -> None:
commands = [ 'python', 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.mp4', '-o', '.assets/examples', '--trim-frame-end', '10', '--headless' ]
commands = [ sys.executable, 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.mp4', '-o', '.assets/examples', '--trim-frame-end', '10', '--headless' ]
run = subprocess.run(commands, stdout = subprocess.PIPE)
assert run.returncode == 0

View File

@ -4,7 +4,7 @@ import subprocess
import pytest
import facefusion.globals
from facefusion.utilities import conditional_download, detect_fps, extract_frames, create_temp, get_temp_directory_path, clear_temp, normalize_output_path, is_file, is_directory, is_image, is_video, encode_execution_providers, decode_execution_providers
from facefusion.utilities import conditional_download, extract_frames, create_temp, get_temp_directory_path, clear_temp, normalize_output_path, is_file, is_directory, is_image, is_video, encode_execution_providers, decode_execution_providers
@pytest.fixture(scope = 'module', autouse = True)
@ -31,12 +31,6 @@ def before_each() -> None:
facefusion.globals.temp_frame_format = 'jpg'
def test_detect_fps() -> None:
assert detect_fps('.assets/examples/target-240p-25fps.mp4') == 25.0
assert detect_fps('.assets/examples/target-240p-30fps.mp4') == 30.0
assert detect_fps('.assets/examples/target-240p-60fps.mp4') == 60.0
def test_extract_frames() -> None:
target_paths =\
[

49
tests/test_vision.py Normal file
View File

@ -0,0 +1,49 @@
import subprocess
import pytest
import facefusion.globals
from facefusion.utilities import conditional_download
from facefusion.vision import get_video_frame, detect_fps, count_video_frame_total
@pytest.fixture(scope = 'module', autouse = True)
def before_all() -> None:
facefusion.globals.temp_frame_quality = 100
facefusion.globals.trim_frame_start = None
facefusion.globals.trim_frame_end = None
facefusion.globals.temp_frame_format = 'png'
conditional_download('.assets/examples',
[
'https://github.com/facefusion/facefusion-assets/releases/download/examples/source.jpg',
'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4'
])
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=25', '.assets/examples/target-240p-25fps.mp4' ])
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=30', '.assets/examples/target-240p-30fps.mp4' ])
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=60', '.assets/examples/target-240p-60fps.mp4' ])
@pytest.fixture(scope = 'function', autouse = True)
def before_each() -> None:
facefusion.globals.trim_frame_start = None
facefusion.globals.trim_frame_end = None
facefusion.globals.temp_frame_quality = 90
facefusion.globals.temp_frame_format = 'jpg'
def test_get_video_frame() -> None:
assert get_video_frame('.assets/examples/target-240p-25fps.mp4') is not None
assert get_video_frame('invalid') is None
def test_detect_fps() -> None:
assert detect_fps('.assets/examples/target-240p-25fps.mp4') == 25.0
assert detect_fps('.assets/examples/target-240p-30fps.mp4') == 30.0
assert detect_fps('.assets/examples/target-240p-60fps.mp4') == 60.0
assert detect_fps('invalid') is None
def test_count_video_frame_total() -> None:
assert count_video_frame_total('.assets/examples/target-240p-25fps.mp4') == 270
assert count_video_frame_total('.assets/examples/target-240p-30fps.mp4') == 324
assert count_video_frame_total('.assets/examples/target-240p-60fps.mp4') == 648
assert count_video_frame_total('invalid') == 0