Merge pull request #812 from facefusion/improvement/deep-swapper-alignment
Improvement/deep swapper alignment
This commit is contained in:
commit
c7e7751b81
@ -5,7 +5,7 @@ import cv2
|
||||
import numpy
|
||||
from cv2.typing import Size
|
||||
|
||||
from facefusion.typing import Anchors, Angle, BoundingBox, Distance, FaceDetectorModel, FaceLandmark5, FaceLandmark68, Mask, Matrix, Points, Scale, Score, Translation, VisionFrame, WarpTemplate, WarpTemplateSet
|
||||
from facefusion.typing import Anchors, Angle, BoundingBox, Direction, Distance, FaceDetectorModel, FaceLandmark5, FaceLandmark68, Mask, Matrix, Points, PointsTemplate, PointsTemplateSet, Scale, Score, Translation, VisionFrame, WarpTemplate, WarpTemplateSet
|
||||
|
||||
WARP_TEMPLATES : WarpTemplateSet =\
|
||||
{
|
||||
@ -16,7 +16,7 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.50000000, 0.61154464 ],
|
||||
[ 0.37913393, 0.77687500 ],
|
||||
[ 0.62086607, 0.77687500 ]
|
||||
]),
|
||||
]).astype(numpy.float32),
|
||||
'arcface_112_v2': numpy.array(
|
||||
[
|
||||
[ 0.34191607, 0.46157411 ],
|
||||
@ -24,7 +24,7 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.50022500, 0.64050536 ],
|
||||
[ 0.37097589, 0.82469196 ],
|
||||
[ 0.63151696, 0.82325089 ]
|
||||
]),
|
||||
]).astype(numpy.float32),
|
||||
'arcface_128_v2': numpy.array(
|
||||
[
|
||||
[ 0.36167656, 0.40387734 ],
|
||||
@ -32,7 +32,15 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.50019687, 0.56044219 ],
|
||||
[ 0.38710391, 0.72160547 ],
|
||||
[ 0.61507734, 0.72034453 ]
|
||||
]),
|
||||
]).astype(numpy.float32),
|
||||
'deep_face_live': numpy.array(
|
||||
[
|
||||
[ 0.22549182, 0.21599032 ],
|
||||
[ 0.75476142, 0.21599032 ],
|
||||
[ 0.49012712, 0.51562511 ],
|
||||
[ 0.25414925, 0.78023333 ],
|
||||
[ 0.72610437, 0.78023333 ]
|
||||
]).astype(numpy.float32),
|
||||
'ffhq_512': numpy.array(
|
||||
[
|
||||
[ 0.37691676, 0.46864664 ],
|
||||
@ -40,7 +48,7 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.50123859, 0.61331904 ],
|
||||
[ 0.39308822, 0.72541100 ],
|
||||
[ 0.61150205, 0.72490465 ]
|
||||
]),
|
||||
]).astype(numpy.float32),
|
||||
'mtcnn_512': numpy.array(
|
||||
[
|
||||
[ 0.36562865, 0.46733799 ],
|
||||
@ -48,7 +56,7 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.50019127, 0.61942959 ],
|
||||
[ 0.39032951, 0.77598822 ],
|
||||
[ 0.61178945, 0.77476328 ]
|
||||
]),
|
||||
]).astype(numpy.float32),
|
||||
'styleganex_384': numpy.array(
|
||||
[
|
||||
[ 0.42353745, 0.52289879 ],
|
||||
@ -56,7 +64,29 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.50123859, 0.61331904 ],
|
||||
[ 0.43364461, 0.68337652 ],
|
||||
[ 0.57015325, 0.68306005 ]
|
||||
])
|
||||
]).astype(numpy.float32)
|
||||
}
|
||||
POINTS_TEMPLATES : PointsTemplateSet =\
|
||||
{
|
||||
'square': numpy.array(
|
||||
[
|
||||
[ 0, 0 ],
|
||||
[ 1, 0 ],
|
||||
[ 1, 1 ],
|
||||
[ 0, 1 ]
|
||||
]).astype(numpy.float32),
|
||||
'triangle_orthogonal': numpy.array(
|
||||
[
|
||||
[ 0, 0 ],
|
||||
[ 1, 0 ],
|
||||
[ 0, 1 ]
|
||||
]).astype(numpy.float32),
|
||||
'triangle_skew': numpy.array(
|
||||
[
|
||||
[ 0, 0 ],
|
||||
[ 1, 0 ],
|
||||
[ 1, 1 ]
|
||||
]).astype(numpy.float32)
|
||||
}
|
||||
|
||||
|
||||
@ -66,16 +96,37 @@ def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_tem
|
||||
return affine_matrix
|
||||
|
||||
|
||||
def estimate_matrix_by_points(source_points : Points, polygon_template : PointsTemplate, crop_size : Size) -> Matrix:
|
||||
target_points = POINTS_TEMPLATES.get(polygon_template) * crop_size
|
||||
affine_matrix = cv2.getAffineTransform(source_points, target_points.astype(numpy.float32))
|
||||
return affine_matrix
|
||||
|
||||
|
||||
def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
|
||||
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size)
|
||||
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
|
||||
return crop_vision_frame, affine_matrix
|
||||
|
||||
|
||||
def warp_face_for_deepfacelive(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, crop_size : Size, shift : Tuple[float, float], coverage : float) -> Tuple[VisionFrame, Matrix]:
|
||||
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'deep_face_live', (1, 1))
|
||||
square_points = POINTS_TEMPLATES.get('square')
|
||||
square_points = transform_points(square_points, cv2.invertAffineTransform(affine_matrix))
|
||||
center_point = square_points.mean(axis = 0)
|
||||
center_point += shift[0] * numpy.subtract(square_points[1], square_points[0])
|
||||
center_point += shift[1] * numpy.subtract(square_points[3], square_points[0])
|
||||
scale = numpy.linalg.norm(center_point - square_points[0]) * coverage
|
||||
top_bottom_direction = calc_points_direction(square_points[0], square_points[2]) * scale
|
||||
bottom_top_direction = calc_points_direction(square_points[3], square_points[1]) * scale
|
||||
source_points = numpy.array([ center_point - top_bottom_direction, center_point + bottom_top_direction, center_point + top_bottom_direction ]).astype(numpy.float32)
|
||||
affine_matrix = estimate_matrix_by_points(source_points, 'triangle_skew', crop_size)
|
||||
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = cv2.INTER_CUBIC)
|
||||
return crop_vision_frame, affine_matrix
|
||||
|
||||
|
||||
def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
|
||||
source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32)
|
||||
target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32)
|
||||
affine_matrix = cv2.getAffineTransform(source_points, target_points)
|
||||
affine_matrix = estimate_matrix_by_points(source_points, 'triangle_orthogonal', crop_size)
|
||||
if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]:
|
||||
interpolation_method = cv2.INTER_AREA
|
||||
else:
|
||||
@ -102,6 +153,12 @@ def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame,
|
||||
return paste_vision_frame
|
||||
|
||||
|
||||
def calc_points_direction(start_point : Points, end_point : Points) -> Direction:
|
||||
direction = end_point - start_point
|
||||
direction /= numpy.linalg.norm(direction)
|
||||
return direction
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> Anchors:
|
||||
y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
|
||||
|
@ -10,7 +10,7 @@ import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.face_analyser import get_many_faces, get_one_face
|
||||
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
|
||||
from facefusion.face_helper import paste_back, warp_face_for_deepfacelive
|
||||
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
|
||||
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
|
||||
from facefusion.face_store import get_reference_faces
|
||||
@ -42,8 +42,9 @@ MODEL_SET : ModelSet =\
|
||||
'path': resolve_relative_path('../.assets/models/Jackie_Chan.dfm')
|
||||
}
|
||||
},
|
||||
'template': 'arcface_128_v2',
|
||||
'size': (224, 224)
|
||||
'size': (224, 224),
|
||||
'shift': (0.0, 0.0),
|
||||
'coverage': 2.2
|
||||
}
|
||||
}
|
||||
|
||||
@ -110,9 +111,10 @@ def post_process() -> None:
|
||||
|
||||
|
||||
def swap_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
|
||||
model_template = get_model_options().get('template')
|
||||
model_size = get_model_options().get('size')
|
||||
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
|
||||
model_shift = get_model_options().get('shift')
|
||||
model_coverage = get_model_options().get('coverage')
|
||||
crop_vision_frame, affine_matrix = warp_face_for_deepfacelive(temp_vision_frame, target_face.landmark_set.get('5/68'), model_size, model_shift, model_coverage)
|
||||
crop_vision_frame_raw = crop_vision_frame.copy()
|
||||
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
|
||||
crop_masks =\
|
||||
@ -166,10 +168,12 @@ def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
|
||||
def prepare_crop_mask(crop_source_mask : Mask, crop_target_mask : Mask) -> Mask:
|
||||
model_size = get_model_options().get('size')
|
||||
crop_mask = numpy.maximum.reduce([ crop_source_mask, crop_target_mask ])
|
||||
blur_size = 6.25
|
||||
kernel_size = 3
|
||||
crop_mask = numpy.minimum.reduce([ crop_source_mask, crop_target_mask ])
|
||||
crop_mask = crop_mask.reshape(model_size).clip(0, 1)
|
||||
crop_mask = cv2.erode(crop_mask, numpy.ones((5, 5), numpy.uint8), iterations = 1)
|
||||
crop_mask = cv2.GaussianBlur(crop_mask, (9, 9), 0)
|
||||
crop_mask = cv2.erode(crop_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)), iterations = 2)
|
||||
crop_mask = cv2.GaussianBlur(crop_mask, (0, 0), blur_size)
|
||||
return crop_mask
|
||||
|
||||
|
||||
|
@ -53,6 +53,7 @@ FaceStore = TypedDict('FaceStore',
|
||||
VisionFrame = NDArray[Any]
|
||||
Mask = NDArray[Any]
|
||||
Points = NDArray[Any]
|
||||
Direction = NDArray[Any]
|
||||
Distance = NDArray[Any]
|
||||
Matrix = NDArray[Any]
|
||||
Anchors = NDArray[Any]
|
||||
@ -85,8 +86,10 @@ ProcessStep = Callable[[str, int, Args], bool]
|
||||
|
||||
Content = Dict[str, Any]
|
||||
|
||||
WarpTemplate = Literal['arcface_112_v1', 'arcface_112_v2', 'arcface_128_v2', 'ffhq_512', 'mtcnn_512', 'styleganex_384']
|
||||
WarpTemplate = Literal['arcface_112_v1', 'arcface_112_v2', 'arcface_128_v2', 'deep_face_live', 'ffhq_512', 'mtcnn_512', 'styleganex_384']
|
||||
WarpTemplateSet = Dict[WarpTemplate, NDArray[Any]]
|
||||
PointsTemplate = Literal['square', 'triangle_orthogonal', 'triangle_skew']
|
||||
PointsTemplateSet = Dict[PointsTemplate, NDArray[Any]]
|
||||
ProcessMode = Literal['output', 'preview', 'stream']
|
||||
|
||||
ErrorCode = Literal[0, 1, 2, 3, 4]
|
||||
|
Loading…
Reference in New Issue
Block a user