from functools import lru_cache import cv2 import numpy from tqdm import tqdm from facefusion import inference_manager, state_manager, wording from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url from facefusion.filesystem import resolve_relative_path from facefusion.thread_helper import conditional_thread_semaphore from facefusion.typing import DownloadScope, Fps, InferencePool, ModelOptions, ModelSet, VisionFrame from facefusion.vision import detect_video_fps, get_video_frame, read_image PROBABILITY_LIMIT = 0.80 RATE_LIMIT = 10 STREAM_COUNTER = 0 @lru_cache(maxsize = None) def create_static_model_set(download_scope : DownloadScope) -> ModelSet: return\ { 'open_nsfw': { 'hashes': { 'content_analyser': { 'url': resolve_download_url('models-3.0.0', 'open_nsfw.hash'), 'path': resolve_relative_path('../.assets/models/open_nsfw.hash') } }, 'sources': { 'content_analyser': { 'url': resolve_download_url('models-3.0.0', 'open_nsfw.onnx'), 'path': resolve_relative_path('../.assets/models/open_nsfw.onnx') } }, 'size': (224, 224), 'mean': [ 104, 117, 123 ] } } def get_inference_pool() -> InferencePool: model_sources = get_model_options().get('sources') return inference_manager.get_inference_pool(__name__, model_sources) def clear_inference_pool() -> None: inference_manager.clear_inference_pool(__name__) def get_model_options() -> ModelOptions: return create_static_model_set('full').get('open_nsfw') def pre_check() -> bool: model_hashes = get_model_options().get('hashes') model_sources = get_model_options().get('sources') return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources) def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool: global STREAM_COUNTER STREAM_COUNTER = STREAM_COUNTER + 1 if STREAM_COUNTER % int(video_fps) == 0: return analyse_frame(vision_frame) return False def analyse_frame(vision_frame : VisionFrame) -> bool: vision_frame = prepare_frame(vision_frame) probability = forward(vision_frame) return probability > PROBABILITY_LIMIT def forward(vision_frame : VisionFrame) -> float: content_analyser = get_inference_pool().get('content_analyser') with conditional_thread_semaphore(): probability = content_analyser.run(None, { 'input': vision_frame })[0][0][1] return probability def prepare_frame(vision_frame : VisionFrame) -> VisionFrame: model_size = get_model_options().get('size') model_mean = get_model_options().get('mean') vision_frame = cv2.resize(vision_frame, model_size).astype(numpy.float32) vision_frame -= numpy.array(model_mean).astype(numpy.float32) vision_frame = numpy.expand_dims(vision_frame, axis = 0) return vision_frame @lru_cache(maxsize = None) def analyse_image(image_path : str) -> bool: vision_frame = read_image(image_path) return analyse_frame(vision_frame) @lru_cache(maxsize = None) def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool: video_fps = detect_video_fps(video_path) frame_range = range(trim_frame_start, trim_frame_end) rate = 0.0 counter = 0 with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress: for frame_number in frame_range: if frame_number % int(video_fps) == 0: vision_frame = get_video_frame(video_path, frame_number) if analyse_frame(vision_frame): counter += 1 rate = counter * int(video_fps) / len(frame_range) * 100 progress.update() progress.set_postfix(rate = rate) return rate > RATE_LIMIT