
* aura fix * fix import * move to vision.py * changes * changes * changes * changes * further reduction * add test * better test * change name
268 lines
9.6 KiB
Python
268 lines
9.6 KiB
Python
from functools import lru_cache
|
|
from typing import List, Optional, Tuple
|
|
|
|
import cv2
|
|
import numpy
|
|
from cv2.typing import Size
|
|
|
|
from facefusion.choices import image_template_sizes, video_template_sizes
|
|
from facefusion.common_helper import is_windows
|
|
from facefusion.filesystem import is_image, is_video, sanitize_path_for_windows
|
|
from facefusion.typing import Duration, Fps, Orientation, Resolution, VisionFrame
|
|
|
|
|
|
@lru_cache(maxsize = 128)
|
|
def read_static_image(image_path : str) -> Optional[VisionFrame]:
|
|
return read_image(image_path)
|
|
|
|
|
|
def read_static_images(image_paths : List[str]) -> List[VisionFrame]:
|
|
frames = []
|
|
|
|
if image_paths:
|
|
for image_path in image_paths:
|
|
frames.append(read_static_image(image_path))
|
|
return frames
|
|
|
|
|
|
def read_image(image_path : str) -> Optional[VisionFrame]:
|
|
if is_image(image_path):
|
|
if is_windows():
|
|
image_path = sanitize_path_for_windows(image_path)
|
|
return cv2.imread(image_path)
|
|
return None
|
|
|
|
|
|
def write_image(image_path : str, vision_frame : VisionFrame) -> bool:
|
|
if image_path:
|
|
if is_windows():
|
|
image_path = sanitize_path_for_windows(image_path)
|
|
return cv2.imwrite(image_path, vision_frame)
|
|
return False
|
|
|
|
|
|
def detect_image_resolution(image_path : str) -> Optional[Resolution]:
|
|
if is_image(image_path):
|
|
image = read_image(image_path)
|
|
height, width = image.shape[:2]
|
|
return width, height
|
|
return None
|
|
|
|
|
|
def restrict_image_resolution(image_path : str, resolution : Resolution) -> Resolution:
|
|
if is_image(image_path):
|
|
image_resolution = detect_image_resolution(image_path)
|
|
if image_resolution < resolution:
|
|
return image_resolution
|
|
return resolution
|
|
|
|
|
|
def create_image_resolutions(resolution : Resolution) -> List[str]:
|
|
resolutions = []
|
|
temp_resolutions = []
|
|
|
|
if resolution:
|
|
width, height = resolution
|
|
temp_resolutions.append(normalize_resolution(resolution))
|
|
for template_size in image_template_sizes:
|
|
temp_resolutions.append(normalize_resolution((width * template_size, height * template_size)))
|
|
temp_resolutions = sorted(set(temp_resolutions))
|
|
for temp_resolution in temp_resolutions:
|
|
resolutions.append(pack_resolution(temp_resolution))
|
|
return resolutions
|
|
|
|
|
|
def get_video_frame(video_path : str, frame_number : int = 0) -> Optional[VisionFrame]:
|
|
if is_video(video_path):
|
|
if is_windows():
|
|
video_path = sanitize_path_for_windows(video_path)
|
|
video_capture = cv2.VideoCapture(video_path)
|
|
if video_capture.isOpened():
|
|
frame_total = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)
|
|
video_capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
|
|
has_vision_frame, vision_frame = video_capture.read()
|
|
video_capture.release()
|
|
if has_vision_frame:
|
|
return vision_frame
|
|
return None
|
|
|
|
|
|
def count_video_frame_total(video_path : str) -> int:
|
|
if is_video(video_path):
|
|
if is_windows():
|
|
video_path = sanitize_path_for_windows(video_path)
|
|
video_capture = cv2.VideoCapture(video_path)
|
|
if video_capture.isOpened():
|
|
video_frame_total = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
video_capture.release()
|
|
return video_frame_total
|
|
return 0
|
|
|
|
|
|
def detect_video_fps(video_path : str) -> Optional[float]:
|
|
if is_video(video_path):
|
|
if is_windows():
|
|
video_path = sanitize_path_for_windows(video_path)
|
|
video_capture = cv2.VideoCapture(video_path)
|
|
if video_capture.isOpened():
|
|
video_fps = video_capture.get(cv2.CAP_PROP_FPS)
|
|
video_capture.release()
|
|
return video_fps
|
|
return None
|
|
|
|
|
|
def restrict_video_fps(video_path : str, fps : Fps) -> Fps:
|
|
if is_video(video_path):
|
|
video_fps = detect_video_fps(video_path)
|
|
if video_fps < fps:
|
|
return video_fps
|
|
return fps
|
|
|
|
|
|
def detect_video_duration(video_path : str) -> Duration:
|
|
video_frame_total = count_video_frame_total(video_path)
|
|
video_fps = detect_video_fps(video_path)
|
|
if video_frame_total and video_fps:
|
|
return video_frame_total / video_fps
|
|
return 0
|
|
|
|
|
|
def detect_video_resolution(video_path : str) -> Optional[Resolution]:
|
|
if is_video(video_path):
|
|
if is_windows():
|
|
video_path = sanitize_path_for_windows(video_path)
|
|
video_capture = cv2.VideoCapture(video_path)
|
|
if video_capture.isOpened():
|
|
width = video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)
|
|
height = video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
|
video_capture.release()
|
|
return int(width), int(height)
|
|
return None
|
|
|
|
|
|
def restrict_video_resolution(video_path : str, resolution : Resolution) -> Resolution:
|
|
if is_video(video_path):
|
|
video_resolution = detect_video_resolution(video_path)
|
|
if video_resolution < resolution:
|
|
return video_resolution
|
|
return resolution
|
|
|
|
|
|
def create_video_resolutions(resolution : Resolution) -> List[str]:
|
|
resolutions = []
|
|
temp_resolutions = []
|
|
|
|
if resolution:
|
|
width, height = resolution
|
|
temp_resolutions.append(normalize_resolution(resolution))
|
|
for template_size in video_template_sizes:
|
|
if width > height:
|
|
temp_resolutions.append(normalize_resolution((template_size * width / height, template_size)))
|
|
else:
|
|
temp_resolutions.append(normalize_resolution((template_size, template_size * height / width)))
|
|
temp_resolutions = sorted(set(temp_resolutions))
|
|
for temp_resolution in temp_resolutions:
|
|
resolutions.append(pack_resolution(temp_resolution))
|
|
return resolutions
|
|
|
|
|
|
def normalize_resolution(resolution : Tuple[float, float]) -> Resolution:
|
|
width, height = resolution
|
|
|
|
if width and height:
|
|
normalize_width = round(width / 2) * 2
|
|
normalize_height = round(height / 2) * 2
|
|
return normalize_width, normalize_height
|
|
return 0, 0
|
|
|
|
|
|
def pack_resolution(resolution : Resolution) -> str:
|
|
width, height = normalize_resolution(resolution)
|
|
return str(width) + 'x' + str(height)
|
|
|
|
|
|
def unpack_resolution(resolution : str) -> Resolution:
|
|
width, height = map(int, resolution.split('x'))
|
|
return width, height
|
|
|
|
|
|
def detect_frame_orientation(vision_frame : VisionFrame) -> Orientation:
|
|
height, width = vision_frame.shape[:2]
|
|
|
|
if width > height:
|
|
return 'landscape'
|
|
return 'portrait'
|
|
|
|
|
|
def resize_frame_resolution(vision_frame : VisionFrame, max_resolution : Resolution) -> VisionFrame:
|
|
height, width = vision_frame.shape[:2]
|
|
max_width, max_height = max_resolution
|
|
|
|
if height > max_height or width > max_width:
|
|
scale = min(max_height / height, max_width / width)
|
|
new_width = int(width * scale)
|
|
new_height = int(height * scale)
|
|
return cv2.resize(vision_frame, (new_width, new_height))
|
|
return vision_frame
|
|
|
|
|
|
def normalize_frame_color(vision_frame : VisionFrame) -> VisionFrame:
|
|
return cv2.cvtColor(vision_frame, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
def create_tile_frames(vision_frame : VisionFrame, size : Size) -> Tuple[List[VisionFrame], int, int]:
|
|
vision_frame = numpy.pad(vision_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0)))
|
|
tile_width = size[0] - 2 * size[2]
|
|
pad_size_bottom = size[2] + tile_width - vision_frame.shape[0] % tile_width
|
|
pad_size_right = size[2] + tile_width - vision_frame.shape[1] % tile_width
|
|
pad_vision_frame = numpy.pad(vision_frame, ((size[2], pad_size_bottom), (size[2], pad_size_right), (0, 0)))
|
|
pad_height, pad_width = pad_vision_frame.shape[:2]
|
|
row_range = range(size[2], pad_height - size[2], tile_width)
|
|
col_range = range(size[2], pad_width - size[2], tile_width)
|
|
tile_vision_frames = []
|
|
|
|
for row_vision_frame in row_range:
|
|
top = row_vision_frame - size[2]
|
|
bottom = row_vision_frame + size[2] + tile_width
|
|
for column_vision_frame in col_range:
|
|
left = column_vision_frame - size[2]
|
|
right = column_vision_frame + size[2] + tile_width
|
|
tile_vision_frames.append(pad_vision_frame[top:bottom, left:right, :])
|
|
return tile_vision_frames, pad_width, pad_height
|
|
|
|
|
|
def merge_tile_frames(tile_vision_frames : List[VisionFrame], temp_width : int, temp_height : int, pad_width : int, pad_height : int, size : Size) -> VisionFrame:
|
|
merge_vision_frame = numpy.zeros((pad_height, pad_width, 3)).astype(numpy.uint8)
|
|
tile_width = tile_vision_frames[0].shape[1] - 2 * size[2]
|
|
tiles_per_row = min(pad_width // tile_width, len(tile_vision_frames))
|
|
|
|
for index, tile_vision_frame in enumerate(tile_vision_frames):
|
|
tile_vision_frame = tile_vision_frame[size[2]:-size[2], size[2]:-size[2]]
|
|
row_index = index // tiles_per_row
|
|
col_index = index % tiles_per_row
|
|
top = row_index * tile_vision_frame.shape[0]
|
|
bottom = top + tile_vision_frame.shape[0]
|
|
left = col_index * tile_vision_frame.shape[1]
|
|
right = left + tile_vision_frame.shape[1]
|
|
merge_vision_frame[top:bottom, left:right, :] = tile_vision_frame
|
|
merge_vision_frame = merge_vision_frame[size[1] : size[1] + temp_height, size[1]: size[1] + temp_width, :]
|
|
return merge_vision_frame
|
|
|
|
|
|
def match_frame_color(source_vision_frame : VisionFrame, target_vision_frame : VisionFrame) -> VisionFrame:
|
|
color_difference_sizes = numpy.linspace(16, target_vision_frame.shape[0], 3, endpoint = False)
|
|
|
|
for color_difference_size in color_difference_sizes:
|
|
source_vision_frame = equalize_frame_color(source_vision_frame, target_vision_frame, normalize_resolution((color_difference_size, color_difference_size)))
|
|
target_vision_frame = equalize_frame_color(source_vision_frame, target_vision_frame, target_vision_frame.shape[:2][::-1])
|
|
return target_vision_frame
|
|
|
|
|
|
def equalize_frame_color(source_vision_frame : VisionFrame, target_vision_frame : VisionFrame, size : Size) -> VisionFrame:
|
|
source_frame_resize = cv2.resize(source_vision_frame, size, interpolation = cv2.INTER_AREA).astype(numpy.float32)
|
|
target_frame_resize = cv2.resize(target_vision_frame, size, interpolation = cv2.INTER_AREA).astype(numpy.float32)
|
|
color_difference_vision_frame = numpy.subtract(source_frame_resize, target_frame_resize)
|
|
color_difference_vision_frame = cv2.resize(color_difference_vision_frame, target_vision_frame.shape[:2][::-1], interpolation = cv2.INTER_CUBIC)
|
|
target_vision_frame = numpy.add(target_vision_frame, color_difference_vision_frame).clip(0, 255).astype(numpy.uint8)
|
|
return target_vision_frame
|