facefusion/facefusion/processors/modules/deep_swapper.py
2024-11-25 22:21:31 +01:00

394 lines
18 KiB
Python
Executable File

from argparse import ArgumentParser
from functools import lru_cache
from typing import List, Tuple
import cv2
import numpy
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import create_int_metavar
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url_by_provider
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import DeepSwapperInputs, DeepSwapperMorph
from facefusion.program_helper import find_argument_group
from facefusion.thread_helper import thread_semaphore
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, Mask, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import conditional_match_frame_color, read_image, read_static_image, write_image
@lru_cache(maxsize = None)
def create_static_model_set() -> ModelSet:
model_config =\
[
('druuzil', 'adrianne_palicki_384', (384, 384)),
('druuzil', 'agnetha_falskog_224', (224, 224)),
('druuzil', 'alan_ritchson_320', (320, 320)),
('druuzil', 'alicia_vikander_320', (320, 320)),
('druuzil', 'amber_midthunder_320', (320, 320)),
('druuzil', 'andras_arato_384', (384, 384)),
('druuzil', 'andrew_tate_320', (320, 320)),
('druuzil', 'anne_hathaway_320', (320, 320)),
('druuzil', 'anya_chalotra_320', (320, 320)),
('druuzil', 'arnold_schwarzenegger_320', (320, 320)),
('druuzil', 'benjamin_affleck_320', (320, 320)),
('druuzil', 'benjamin_stiller_384', (384, 384)),
('druuzil', 'bradley_pitt_224', (224, 224)),
('druuzil', 'bryan_cranston_320', (320, 320)),
('druuzil', 'catherine_blanchett_352', (352, 352)),
('druuzil', 'christian_bale_320', (320, 320)),
('druuzil', 'christopher_hemsworth_320', (320, 320)),
('druuzil', 'christoph_waltz_384', (384, 384)),
('druuzil', 'cillian_murphy_320', (320, 320)),
('druuzil', 'cobie_smulders_256', (256, 256)),
('druuzil', 'dwayne_johnson_384', (384, 384)),
('druuzil', 'edward_norton_320', (320, 320)),
('druuzil', 'elisabeth_shue_320', (320, 320)),
('druuzil', 'elizabeth_olsen_384', (384, 384)),
('druuzil', 'elon_musk_320', (320, 320)),
('druuzil', 'emily_blunt_320', (320, 320)),
('druuzil', 'emma_stone_384', (384, 384)),
('druuzil', 'emma_watson_320', (320, 320)),
('druuzil', 'erin_moriarty_384', (384, 384)),
('druuzil', 'eva_green_320', (320, 320)),
('druuzil', 'ewan_mcgregor_320', (320, 320)),
('druuzil', 'florence_pugh_320', (320, 320)),
('druuzil', 'freya_allan_320', (320, 320)),
('druuzil', 'gary_cole_224', (224, 224)),
('druuzil', 'gigi_hadid_224', (224, 224)),
('druuzil', 'harrison_ford_384', (384, 384)),
('druuzil', 'hayden_christensen_320', (320, 320)),
('druuzil', 'heath_ledger_320', (320, 320)),
('druuzil', 'henry_cavill_448', (448, 448)),
('druuzil', 'hugh_jackman_384', (384, 384)),
('druuzil', 'idris_elba_320', (320, 320)),
('druuzil', 'jack_nicholson_320', (320, 320)),
('druuzil', 'james_mcavoy_320', (320, 320)),
('druuzil', 'james_varney_320', (320, 320)),
('druuzil', 'jason_momoa_320', (320, 320)),
('druuzil', 'jason_statham_320', (320, 320)),
('druuzil', 'jennifer_connelly_384', (384, 384)),
('druuzil', 'jimmy_donaldson_320', (320, 320)),
('druuzil', 'jordan_peterson_384', (384, 384)),
('druuzil', 'karl_urban_224', (224, 224)),
('druuzil', 'kate_beckinsale_384', (384, 384)),
('druuzil', 'laurence_fishburne_384', (384, 384)),
('druuzil', 'lili_reinhart_320', (320, 320)),
('druuzil', 'mads_mikkelsen_384', (384, 384)),
('druuzil', 'mary_winstead_320', (320, 320)),
('druuzil', 'melina_juergens_320', (320, 320)),
('druuzil', 'michael_fassbender_320', (320, 320)),
('druuzil', 'michael_fox_320', (320, 320)),
('druuzil', 'millie_bobby_brown_320', (320, 320)),
('druuzil', 'morgan_freeman_320', (320, 320)),
('druuzil', 'patrick_stewart_320', (320, 320)),
('druuzil', 'rebecca_ferguson_320', (320, 320)),
('druuzil', 'scarlett_johansson_320', (320, 320)),
('druuzil', 'seth_macfarlane_384', (384, 384)),
('druuzil', 'thomas_cruise_320', (320, 320)),
('druuzil', 'thomas_hanks_384', (384, 384)),
('iperov', 'alexandra_daddario_224', (224, 224)),
('iperov', 'alexei_navalny_224', (224, 224)),
('iperov', 'amber_heard_224', (224, 224)),
('iperov', 'dilraba_dilmurat_224', (224, 224)),
('iperov', 'elon_musk_224', (224, 224)),
('iperov', 'emilia_clarke_224', (224, 224)),
('iperov', 'emma_watson_224', (224, 224)),
('iperov', 'erin_moriarty_224', (224, 224)),
('iperov', 'jackie_chan_224', (224, 224)),
('iperov', 'james_carrey_224', (224, 224)),
('iperov', 'jason_statham_320', (320, 320)),
('iperov', 'keanu_reeves_320', (320, 320)),
('iperov', 'margot_robbie_224', (224, 224)),
('iperov', 'natalie_dormer_224', (224, 224)),
('iperov', 'nicolas_coppola_224', (224, 224)),
('iperov', 'robert_downey_224', (224, 224)),
('iperov', 'rowan_atkinson_224', (224, 224)),
('iperov', 'ryan_reynolds_224', (224, 224)),
('iperov', 'scarlett_johansson_224', (224, 224)),
('iperov', 'sylvester_stallone_224', (224, 224)),
('iperov', 'thomas_cruise_224', (224, 224)),
('iperov', 'thomas_holland_224', (224, 224)),
('iperov', 'vin_diesel_224', (224, 224)),
('iperov', 'vladimir_putin_224', (224, 224)),
('jen', 'angelica_trae_288', (288, 288)),
('jen', 'ella_freya_224', (224, 224)),
('jen', 'emma_myers_320', (320, 320)),
('jen', 'evie_pickerill_224', (224, 224)),
('jen', 'kang_hyewon_320', (320, 320)),
('jen', 'maddie_mead_224', (224, 224)),
('jen', 'nicole_turnbull_288', (288, 288)),
('mats', 'alica_schmidt_320', (320, 320)),
('mats', 'ashley_alexiss_224', (224, 224)),
('mats', 'billie_eilish_224', (224, 224)),
('mats', 'brie_larson_224', (224, 224)),
('mats', 'cara_delevingne_224', (224, 224)),
('mats', 'carolin_kebekus_224', (224, 224)),
('mats', 'chelsea_clinton_224', (224, 224)),
('mats', 'claire_boucher_224', (224, 224)),
('mats', 'corinna_kopf_224', (224, 224)),
('mats', 'florence_pugh_224', (224, 224)),
('mats', 'hillary_clinton_224', (224, 224)),
('mats', 'jenna_fischer_224', (224, 224)),
('mats', 'kim_jisoo_320', (320, 320)),
('mats', 'mica_suarez_320', (320, 320)),
('mats', 'shailene_woodley_224', (224, 224)),
('mats', 'shraddha_kapoor_320', (320, 320)),
('mats', 'yu_jimin_352', (352, 352)),
('rumateus', 'alison_brie_224', (224, 224)),
('rumateus', 'amber_heard_224', (224, 224)),
('rumateus', 'angelina_jolie_224', (224, 224)),
('rumateus', 'aubrey_plaza_224', (224, 224)),
('rumateus', 'bridget_regan_224', (224, 224)),
('rumateus', 'cobie_smulders_224', (224, 224)),
('rumateus', 'deborah_woll_224', (224, 224)),
('rumateus', 'dua_lipa_224', (224, 224)),
('rumateus', 'emma_stone_224', (224, 224)),
('rumateus', 'hailee_steinfeld_224', (224, 224)),
('rumateus', 'hilary_duff_224', (224, 224)),
('rumateus', 'jessica_alba_224', (224, 224)),
('rumateus', 'jessica_biel_224', (224, 224)),
('rumateus', 'john_cena_224', (224, 224)),
('rumateus', 'kim_kardashian_224', (224, 224)),
('rumateus', 'kristen_bell_224', (224, 224)),
('rumateus', 'lucy_liu_224', (224, 224)),
('rumateus', 'margot_robbie_224', (224, 224)),
('rumateus', 'megan_fox_224', (224, 224)),
('rumateus', 'meghan_markle_224', (224, 224)),
('rumateus', 'millie_bobby_brown_224', (224, 224)),
('rumateus', 'natalie_portman_224', (224, 224)),
('rumateus', 'nicki_minaj_224', (224, 224)),
('rumateus', 'olivia_wilde_224', (224, 224)),
('rumateus', 'shay_mitchell_224', (224, 224)),
('rumateus', 'sophie_turner_224', (224, 224)),
('rumateus', 'taylor_swift_224', (224, 224))
]
model_set : ModelSet = {}
for model_creator, model_name, model_size in model_config:
model_id = '/'.join([ model_creator, model_name ])
model_set[model_id] =\
{
'hashes':
{
'deep_swapper':
{
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_creator, model_name + '.hash'),
'path': resolve_relative_path('../.assets/models/' + model_creator + '/' + model_name + '.hash')
}
},
'sources':
{
'deep_swapper':
{
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_creator, model_name + '.dfm'),
'path': resolve_relative_path('../.assets/models/' + model_creator + '/' + model_name + '.dfm')
}
},
'template': 'dfl_whole_face',
'size': model_size
}
return model_set
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
model_context = __name__ + '.' + state_manager.get_item('deep_swapper_model')
return inference_manager.get_inference_pool(model_context, model_sources)
def clear_inference_pool() -> None:
model_context = __name__ + '.' + state_manager.get_item('deep_swapper_model')
inference_manager.clear_inference_pool(model_context)
def get_model_options() -> ModelOptions:
deep_swapper_model = state_manager.get_item('deep_swapper_model')
return create_static_model_set().get(deep_swapper_model)
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--deep-swapper-model', help = wording.get('help.deep_swapper_model'), default = config.get_str_value('processors.deep_swapper_model', 'iperov/elon_musk_224'), choices = processors_choices.deep_swapper_models)
group_processors.add_argument('--deep-swapper-morph', help = wording.get('help.deep_swapper_morph'), type = int, default = config.get_int_value('processors.deep_swapper_morph', '80'), choices = processors_choices.deep_swapper_morph_range, metavar = create_int_metavar(processors_choices.deep_swapper_morph_range))
facefusion.jobs.job_store.register_step_keys([ 'deep_swapper_model', 'deep_swapper_morph' ])
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
apply_state_item('deep_swapper_model', args.get('deep_swapper_model'))
apply_state_item('deep_swapper_morph', args.get('deep_swapper_morph'))
def pre_check() -> bool:
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__)
return False
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__)
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__)
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
clear_inference_pool()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
face_classifier.clear_inference_pool()
face_detector.clear_inference_pool()
face_landmarker.clear_inference_pool()
face_masker.clear_inference_pool()
face_recognizer.clear_inference_pool()
def swap_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_model_options().get('template')
model_size = get_model_options().get('size')
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
crop_vision_frame_raw = crop_vision_frame.copy()
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
crop_masks =\
[
box_mask
]
if 'occlusion' in state_manager.get_item('face_mask_types'):
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_masks.append(occlusion_mask)
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
deep_swapper_morph = numpy.array([ numpy.interp(state_manager.get_item('deep_swapper_morph'), [ 0, 100 ], [ 0, 1 ]) ]).astype(numpy.float32)
crop_vision_frame, crop_source_mask, crop_target_mask = forward(crop_vision_frame, deep_swapper_morph)
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
crop_vision_frame = conditional_match_frame_color(crop_vision_frame_raw, crop_vision_frame)
crop_masks.append(prepare_crop_mask(crop_source_mask, crop_target_mask))
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
return paste_vision_frame
def forward(crop_vision_frame : VisionFrame, deep_swapper_morph : DeepSwapperMorph) -> Tuple[VisionFrame, Mask, Mask]:
deep_swapper = get_inference_pool().get('deep_swapper')
deep_swapper_inputs = {}
for deep_swapper_input in deep_swapper.get_inputs():
if deep_swapper_input.name == 'in_face:0':
deep_swapper_inputs[deep_swapper_input.name] = crop_vision_frame
if deep_swapper_input.name == 'morph_value:0':
deep_swapper_inputs[deep_swapper_input.name] = deep_swapper_morph
with thread_semaphore():
crop_target_mask, crop_vision_frame, crop_source_mask = deep_swapper.run(None, deep_swapper_inputs)
return crop_vision_frame[0], crop_source_mask[0], crop_target_mask[0]
def has_morph_input() -> bool:
deep_swapper = get_inference_pool().get('deep_swapper')
for deep_swapper_input in deep_swapper.get_inputs():
if deep_swapper_input.name == 'morph_value:0':
return True
return False
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = cv2.addWeighted(crop_vision_frame, 1.75, cv2.GaussianBlur(crop_vision_frame, (0, 0), 2), -0.75, 0)
crop_vision_frame = crop_vision_frame / 255.0
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0).astype(numpy.float32)
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = (crop_vision_frame * 255.0).clip(0, 255)
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)
return crop_vision_frame
def prepare_crop_mask(crop_source_mask : Mask, crop_target_mask : Mask) -> Mask:
model_size = get_model_options().get('size')
blur_size = 6.25
kernel_size = 3
crop_mask = numpy.minimum.reduce([ crop_source_mask, crop_target_mask ])
crop_mask = crop_mask.reshape(model_size).clip(0, 1)
crop_mask = cv2.erode(crop_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)), iterations = 2)
crop_mask = cv2.GaussianBlur(crop_mask, (0, 0), blur_size)
return crop_mask
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return swap_face(target_face, temp_vision_frame)
def process_frame(inputs : DeepSwapperInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
target_vision_frame = inputs.get('target_vision_frame')
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
if state_manager.get_item('face_selector_mode') == 'many':
if many_faces:
for target_face in many_faces:
target_vision_frame = swap_face(target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'one':
target_face = get_one_face(many_faces)
if target_face:
target_vision_frame = swap_face(target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'reference':
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = swap_face(similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_path : str, target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
processors.multi_process_frames(None, temp_frame_paths, process_frames)