
* Add simswap models * Add ghost models * Introduce normed template * Conditional prepare and normalize for ghost * Conditional prepare and normalize for ghost * Get simswap working * Get simswap working
166 lines
5.8 KiB
Python
166 lines
5.8 KiB
Python
from typing import Any, List, Dict, Literal, Optional
|
|
from argparse import ArgumentParser
|
|
import threading
|
|
import cv2
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
from realesrgan import RealESRGANer
|
|
|
|
import facefusion.globals
|
|
import facefusion.processors.frame.core as frame_processors
|
|
from facefusion import wording
|
|
from facefusion.face_analyser import clear_face_analyser
|
|
from facefusion.predictor import clear_predictor
|
|
from facefusion.typing import Frame, Face, Update_Process, ProcessMode, ModelValue, OptionsWithModel
|
|
from facefusion.utilities import conditional_download, resolve_relative_path, is_file, is_download_done, map_device, update_status
|
|
from facefusion.vision import read_image, read_static_image, write_image
|
|
from facefusion.processors.frame import globals as frame_processors_globals
|
|
from facefusion.processors.frame import choices as frame_processors_choices
|
|
|
|
FRAME_PROCESSOR = None
|
|
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
|
|
THREAD_LOCK : threading.Lock = threading.Lock()
|
|
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER'
|
|
MODELS: Dict[str, ModelValue] =\
|
|
{
|
|
'realesrgan_x2plus':
|
|
{
|
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/RealESRGAN_x2plus.pth',
|
|
'path': resolve_relative_path('../.assets/models/RealESRGAN_x2plus.pth'),
|
|
'scale': 2
|
|
},
|
|
'realesrgan_x4plus':
|
|
{
|
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/RealESRGAN_x4plus.pth',
|
|
'path': resolve_relative_path('../.assets/models/RealESRGAN_x4plus.pth'),
|
|
'scale': 4
|
|
},
|
|
'realesrnet_x4plus':
|
|
{
|
|
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/RealESRNet_x4plus.pth',
|
|
'path': resolve_relative_path('../.assets/models/RealESRNet_x4plus.pth'),
|
|
'scale': 4
|
|
}
|
|
}
|
|
OPTIONS : Optional[OptionsWithModel] = None
|
|
|
|
|
|
def get_frame_processor() -> Any:
|
|
global FRAME_PROCESSOR
|
|
|
|
with THREAD_LOCK:
|
|
if FRAME_PROCESSOR is None:
|
|
model_path = get_options('model').get('path')
|
|
model_scale = get_options('model').get('scale')
|
|
FRAME_PROCESSOR = RealESRGANer(
|
|
model_path = model_path,
|
|
model = RRDBNet(
|
|
num_in_ch = 3,
|
|
num_out_ch = 3,
|
|
scale = model_scale
|
|
),
|
|
device = map_device(facefusion.globals.execution_providers),
|
|
scale = model_scale
|
|
)
|
|
return FRAME_PROCESSOR
|
|
|
|
|
|
def clear_frame_processor() -> None:
|
|
global FRAME_PROCESSOR
|
|
|
|
FRAME_PROCESSOR = None
|
|
|
|
|
|
def get_options(key : Literal[ 'model' ]) -> Any:
|
|
global OPTIONS
|
|
|
|
if OPTIONS is None:
|
|
OPTIONS =\
|
|
{
|
|
'model': MODELS[frame_processors_globals.frame_enhancer_model]
|
|
}
|
|
return OPTIONS.get(key)
|
|
|
|
|
|
def set_options(key : Literal[ 'model' ], value : Any) -> None:
|
|
global OPTIONS
|
|
|
|
OPTIONS[key] = value
|
|
|
|
|
|
def register_args(program : ArgumentParser) -> None:
|
|
program.add_argument('--frame-enhancer-model', help = wording.get('frame_processor_model_help'), dest = 'frame_enhancer_model', default = 'realesrgan_x2plus', choices = frame_processors_choices.frame_enhancer_models)
|
|
program.add_argument('--frame-enhancer-blend', help = wording.get('frame_processor_blend_help'), dest = 'frame_enhancer_blend', type = int, default = 80, choices = range(101), metavar = '[0-100]')
|
|
|
|
|
|
def apply_args(program : ArgumentParser) -> None:
|
|
args = program.parse_args()
|
|
frame_processors_globals.frame_enhancer_model = args.frame_enhancer_model
|
|
frame_processors_globals.frame_enhancer_blend = args.frame_enhancer_blend
|
|
|
|
|
|
def pre_check() -> bool:
|
|
if not facefusion.globals.skip_download:
|
|
download_directory_path = resolve_relative_path('../.assets/models')
|
|
model_url = get_options('model').get('url')
|
|
conditional_download(download_directory_path, [ model_url ])
|
|
return True
|
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool:
|
|
model_url = get_options('model').get('url')
|
|
model_path = get_options('model').get('path')
|
|
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
|
|
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
|
|
return False
|
|
elif not is_file(model_path):
|
|
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
|
|
return False
|
|
if mode == 'output' and not facefusion.globals.output_path:
|
|
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
|
|
return False
|
|
return True
|
|
|
|
|
|
def post_process() -> None:
|
|
clear_frame_processor()
|
|
clear_face_analyser()
|
|
clear_predictor()
|
|
read_static_image.cache_clear()
|
|
|
|
|
|
def enhance_frame(temp_frame : Frame) -> Frame:
|
|
with THREAD_SEMAPHORE:
|
|
paste_frame, _ = get_frame_processor().enhance(temp_frame)
|
|
temp_frame = blend_frame(temp_frame, paste_frame)
|
|
return temp_frame
|
|
|
|
|
|
def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame:
|
|
frame_enhancer_blend = 1 - (frame_processors_globals.frame_enhancer_blend / 100)
|
|
paste_frame_height, paste_frame_width = paste_frame.shape[0:2]
|
|
temp_frame = cv2.resize(temp_frame, (paste_frame_width, paste_frame_height))
|
|
temp_frame = cv2.addWeighted(temp_frame, frame_enhancer_blend, paste_frame, 1 - frame_enhancer_blend, 0)
|
|
return temp_frame
|
|
|
|
|
|
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
|
|
return enhance_frame(temp_frame)
|
|
|
|
|
|
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
|
for temp_frame_path in temp_frame_paths:
|
|
temp_frame = read_image(temp_frame_path)
|
|
result_frame = process_frame(None, None, temp_frame)
|
|
write_image(temp_frame_path, result_frame)
|
|
update_progress()
|
|
|
|
|
|
def process_image(source_path : str, target_path : str, output_path : str) -> None:
|
|
target_frame = read_static_image(target_path)
|
|
result = process_frame(None, None, target_frame)
|
|
write_image(output_path, result)
|
|
|
|
|
|
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
|
|
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)
|