
* Add simswap models * Add ghost models * Introduce normed template * Conditional prepare and normalize for ghost * Conditional prepare and normalize for ghost * Get simswap working * Get simswap working
153 lines
6.2 KiB
Python
153 lines
6.2 KiB
Python
from typing import Any, Dict, List, Optional
|
|
import cv2
|
|
import gradio
|
|
|
|
import facefusion.globals
|
|
from facefusion import wording
|
|
from facefusion.typing import Frame, Face
|
|
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension, read_static_image
|
|
from facefusion.face_analyser import get_one_face
|
|
from facefusion.face_reference import get_face_reference, set_face_reference
|
|
from facefusion.predictor import predict_frame
|
|
from facefusion.processors.frame.core import load_frame_processor_module
|
|
from facefusion.utilities import is_video, is_image
|
|
from facefusion.uis.typing import ComponentName
|
|
from facefusion.uis.core import get_ui_component, register_ui_component
|
|
|
|
PREVIEW_IMAGE : Optional[gradio.Image] = None
|
|
PREVIEW_FRAME_SLIDER : Optional[gradio.Slider] = None
|
|
|
|
|
|
def render() -> None:
|
|
global PREVIEW_IMAGE
|
|
global PREVIEW_FRAME_SLIDER
|
|
|
|
preview_image_args: Dict[str, Any] =\
|
|
{
|
|
'label': wording.get('preview_image_label'),
|
|
'interactive': False
|
|
}
|
|
preview_frame_slider_args: Dict[str, Any] =\
|
|
{
|
|
'label': wording.get('preview_frame_slider_label'),
|
|
'step': 1,
|
|
'minimum': 0,
|
|
'maximum': 100,
|
|
'visible': False
|
|
}
|
|
conditional_set_face_reference()
|
|
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
|
|
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_recognition else None
|
|
if is_image(facefusion.globals.target_path):
|
|
target_frame = read_static_image(facefusion.globals.target_path)
|
|
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
|
|
preview_image_args['value'] = normalize_frame_color(preview_frame)
|
|
if is_video(facefusion.globals.target_path):
|
|
temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
|
|
preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
|
|
preview_image_args['value'] = normalize_frame_color(preview_frame)
|
|
preview_image_args['visible'] = True
|
|
preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number
|
|
preview_frame_slider_args['maximum'] = count_video_frame_total(facefusion.globals.target_path)
|
|
preview_frame_slider_args['visible'] = True
|
|
PREVIEW_IMAGE = gradio.Image(**preview_image_args)
|
|
PREVIEW_FRAME_SLIDER = gradio.Slider(**preview_frame_slider_args)
|
|
register_ui_component('preview_frame_slider', PREVIEW_FRAME_SLIDER)
|
|
|
|
|
|
def listen() -> None:
|
|
PREVIEW_FRAME_SLIDER.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
|
|
multi_one_component_names : List[ComponentName] =\
|
|
[
|
|
'source_image',
|
|
'target_image',
|
|
'target_video'
|
|
]
|
|
for component_name in multi_one_component_names:
|
|
component = get_ui_component(component_name)
|
|
if component:
|
|
for method in [ 'upload', 'change', 'clear' ]:
|
|
getattr(component, method)(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
|
|
multi_two_component_names : List[ComponentName] =\
|
|
[
|
|
'target_image',
|
|
'target_video'
|
|
]
|
|
for component_name in multi_two_component_names:
|
|
component = get_ui_component(component_name)
|
|
if component:
|
|
for method in [ 'upload', 'change', 'clear' ]:
|
|
getattr(component, method)(update_preview_frame_slider, outputs = PREVIEW_FRAME_SLIDER)
|
|
select_component_names : List[ComponentName] =\
|
|
[
|
|
'reference_face_position_gallery',
|
|
'face_analyser_direction_dropdown',
|
|
'face_analyser_age_dropdown',
|
|
'face_analyser_gender_dropdown'
|
|
]
|
|
for component_name in select_component_names:
|
|
component = get_ui_component(component_name)
|
|
if component:
|
|
component.select(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
|
|
change_component_names : List[ComponentName] =\
|
|
[
|
|
'face_recognition_dropdown',
|
|
'reference_face_distance_slider',
|
|
'frame_processors_checkbox_group',
|
|
'face_swapper_model_dropdown',
|
|
'face_enhancer_model_dropdown',
|
|
'face_enhancer_blend_slider',
|
|
'frame_enhancer_model_dropdown',
|
|
'frame_enhancer_blend_slider'
|
|
]
|
|
for component_name in change_component_names:
|
|
component = get_ui_component(component_name)
|
|
if component:
|
|
component.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
|
|
|
|
|
|
def update_preview_image(frame_number : int = 0) -> gradio.Image:
|
|
conditional_set_face_reference()
|
|
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
|
|
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_recognition else None
|
|
if is_image(facefusion.globals.target_path):
|
|
target_frame = read_static_image(facefusion.globals.target_path)
|
|
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
|
|
preview_frame = normalize_frame_color(preview_frame)
|
|
return gradio.Image(value = preview_frame)
|
|
if is_video(facefusion.globals.target_path):
|
|
temp_frame = get_video_frame(facefusion.globals.target_path, frame_number)
|
|
preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
|
|
preview_frame = normalize_frame_color(preview_frame)
|
|
return gradio.Image(value = preview_frame)
|
|
return gradio.Image(value = None)
|
|
|
|
|
|
def update_preview_frame_slider() -> gradio.Slider:
|
|
if is_video(facefusion.globals.target_path):
|
|
video_frame_total = count_video_frame_total(facefusion.globals.target_path)
|
|
return gradio.Slider(maximum = video_frame_total, visible = True)
|
|
return gradio.Slider(value = None, maximum = None, visible = False)
|
|
|
|
|
|
def process_preview_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
|
|
temp_frame = resize_frame_dimension(temp_frame, 640, 640)
|
|
if predict_frame(temp_frame):
|
|
return cv2.GaussianBlur(temp_frame, (99, 99), 0)
|
|
for frame_processor in facefusion.globals.frame_processors:
|
|
frame_processor_module = load_frame_processor_module(frame_processor)
|
|
if frame_processor_module.pre_process('preview'):
|
|
temp_frame = frame_processor_module.process_frame(
|
|
source_face,
|
|
reference_face,
|
|
temp_frame
|
|
)
|
|
return temp_frame
|
|
|
|
|
|
def conditional_set_face_reference() -> None:
|
|
if 'reference' in facefusion.globals.face_recognition and not get_face_reference():
|
|
reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
|
|
reference_face = get_one_face(reference_frame, facefusion.globals.reference_face_position)
|
|
set_face_reference(reference_face)
|