
* Rename landmark 5 variables * Mark as NEXT * Render tabs for multiple ui layout usage * Allow many face detectors at once, Add face detector tweaks * Remove face detector tweaks for now (kinda placebo) * Fix lint issues * Allow rendering the landmark-5 and landmark-5/68 via debugger * Fix naming * Convert face landmark based on confidence score * Convert face landmark based on confidence score * Add scrfd face detector model (#397) * Add scrfd face detector model * Switch to scrfd_2.5g.onnx model * Just some renaming * Downgrade OpenCV, Add SYSTEM_VERSION_COMPAT=0 for MacOS * Improve naming * prepare detect frame outside of semaphore * Feat/process manager (#399) * Minor naming * Introduce process manager to start and stop * Introduce process manager to start and stop * Introduce process manager to start and stop * Introduce process manager to start and stop * Introduce process manager to start and stop * Remove useless test for now * Avoid useless variables * Show stop once is_processing is True * Allow to stop ffmpeg processing too * Implement output image resolution (#403) * Implement output image resolution * Reorder code * Simplify output logic and therefore fix bug * Frame-enhancer-onnx (#404) * changes * changes * changes * changes * add models * update workflow * Some cleanup * Some cleanup * Feat/frame enhancer polishing (#410) * Some cleanup * Polish the frame enhancer * Frame Enhancer: Add more models, optimize processing * Minor changes * Improve readability of create_tile_frames and merge_tile_frames * We don't have enough models yet * Feat/face landmarker score (#413) * Introduce face landmarker score * Fix testing * Fix testing * Use release for score related sliders * Reduce face landmark fallbacks * Scores and landmarks in Face dict, Change color-theme in face debugger * Scores and landmarks in Face dict, Change color-theme in face debugger * Fix some naming * Add 8K support (for whatever reasons) * Fix testing * Using get() for face.landmarks * Introduce statistics * More statistics * Limit the histogram equalization * Enable queue() for default layout * Improve copy_image() * Fix error when switching detector model * Always set UI values with globals if possible * Use different logic for output image and output video resolutions * Enforce re-download if file size is off * Remove unused method * Remove unused method * Remove unused warning filter * Improved output path normalization (#419) * Handle some exceptions * Handle some exceptions * Cleanup * Prevent countless thread locks * Listen to user feedback * Fix webp edge case * Feat/cuda device detection (#424) * Introduce cuda device detection * Introduce cuda device detection * it's gtx * Move logic to run_nvidia_smi() * Finalize execution device naming * Finalize execution device naming * Merge execution_helper.py to execution.py * Undo lowercase of values * Undo lowercase of values * Finalize naming * Add missing entry to ini * fix lip_syncer preview (#426) * fix lip_syncer preview * change * Refresh preview on trim changes * Cleanup frame enhancers and remove useless scale in merge_video() (#428) * Keep lips over the whole video once lip syncer is enabled (#430) * Keep lips over the whole video once lip syncer is enabled * changes * changes * Fix spacing * Use empty audio frame on silence * Use empty audio frame on silence * Fix ConfigParser encoding (#431) facefusion.ini is UTF8 encoded but config.py doesn't specify encoding which results in corrupted entries when non english characters are used. Affected entries: source_paths target_path output_path * Adjust spacing * Improve the GTX 16 series detection * Use general exception to catch ParseError * Use general exception to catch ParseError * Host frame enhancer models4 * Use latest onnxruntime * Minor changes in benchmark UI * Different approach to cancel ffmpeg process * Add support for amd amf encoders (#433) * Add amd_amf encoders * remove -rc cqp from amf encoder parameters * Improve terminal output, move success messages to debug mode * Improve terminal output, move success messages to debug mode * Minor update * Minor update * onnxruntime 1.17.1 matches cuda 12.2 * Feat/improved scaling (#435) * Prevent useless temp upscaling, Show resolution and fps in terminal output * Remove temp frame quality * Remove temp frame quality * Tiny cleanup * Default back to png for temp frames, Remove pix_fmt from frame extraction due mjpeg error * Fix inswapper fallback by onnxruntime * Fix inswapper fallback by major onnxruntime * Fix inswapper fallback by major onnxruntime * Add testing for vision restrict methods * Fix left / right face mask regions, add left-ear and right-ear * Flip right and left again * Undo ears - does not work with box mask * Prepare next release * Fix spacing * 100% quality when using jpg for temp frames * Use span_kendata_x4 as default as of speed * benchmark optimal tile and pad * Undo commented out code * Add real_esrgan_x4_fp16 model * Be strict when using many face detectors --------- Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com> Co-authored-by: aldemoth <159712934+aldemoth@users.noreply.github.com>
100 lines
3.0 KiB
Python
100 lines
3.0 KiB
Python
import subprocess
|
|
import pytest
|
|
|
|
import facefusion.globals
|
|
from facefusion.download import conditional_download
|
|
from facefusion.face_analyser import clear_face_analyser, get_one_face
|
|
from facefusion.typing import Face
|
|
from facefusion.vision import read_static_image
|
|
|
|
|
|
@pytest.fixture(scope = 'module', autouse = True)
|
|
def before_all() -> None:
|
|
conditional_download('.assets/examples',
|
|
[
|
|
'https://github.com/facefusion/facefusion-assets/releases/download/examples/source.jpg'
|
|
])
|
|
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/source.jpg', '-vf', 'crop=iw*0.8:ih*0.8', '.assets/examples/source-80crop.jpg' ])
|
|
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/source.jpg', '-vf', 'crop=iw*0.7:ih*0.7', '.assets/examples/source-70crop.jpg' ])
|
|
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/source.jpg', '-vf', 'crop=iw*0.6:ih*0.6', '.assets/examples/source-60crop.jpg' ])
|
|
|
|
|
|
@pytest.fixture(autouse = True)
|
|
def before_each() -> None:
|
|
facefusion.globals.face_detector_score = 0.5
|
|
facefusion.globals.face_landmarker_score = 0.5
|
|
facefusion.globals.face_recognizer_model = 'arcface_inswapper'
|
|
clear_face_analyser()
|
|
|
|
|
|
def test_get_one_face_with_retinaface() -> None:
|
|
facefusion.globals.face_detector_model = 'retinaface'
|
|
facefusion.globals.face_detector_size = '320x320'
|
|
|
|
source_paths =\
|
|
[
|
|
'.assets/examples/source.jpg',
|
|
'.assets/examples/source-80crop.jpg',
|
|
'.assets/examples/source-70crop.jpg',
|
|
'.assets/examples/source-60crop.jpg'
|
|
]
|
|
for source_path in source_paths:
|
|
source_frame = read_static_image(source_path)
|
|
face = get_one_face(source_frame)
|
|
|
|
assert isinstance(face, Face)
|
|
|
|
|
|
def test_get_one_face_with_scrfd() -> None:
|
|
facefusion.globals.face_detector_model = 'scrfd'
|
|
facefusion.globals.face_detector_size = '640x640'
|
|
|
|
source_paths =\
|
|
[
|
|
'.assets/examples/source.jpg',
|
|
'.assets/examples/source-80crop.jpg',
|
|
'.assets/examples/source-70crop.jpg',
|
|
'.assets/examples/source-60crop.jpg'
|
|
]
|
|
for source_path in source_paths:
|
|
source_frame = read_static_image(source_path)
|
|
face = get_one_face(source_frame)
|
|
|
|
assert isinstance(face, Face)
|
|
|
|
|
|
def test_get_one_face_with_yoloface() -> None:
|
|
facefusion.globals.face_detector_model = 'yoloface'
|
|
facefusion.globals.face_detector_size = '640x640'
|
|
|
|
source_paths =\
|
|
[
|
|
'.assets/examples/source.jpg',
|
|
'.assets/examples/source-80crop.jpg',
|
|
'.assets/examples/source-70crop.jpg',
|
|
'.assets/examples/source-60crop.jpg'
|
|
]
|
|
for source_path in source_paths:
|
|
source_frame = read_static_image(source_path)
|
|
face = get_one_face(source_frame)
|
|
|
|
assert isinstance(face, Face)
|
|
|
|
|
|
def test_get_one_face_with_yunet() -> None:
|
|
facefusion.globals.face_detector_model = 'yunet'
|
|
facefusion.globals.face_detector_size = '640x640'
|
|
|
|
source_paths =\
|
|
[
|
|
'.assets/examples/source.jpg',
|
|
'.assets/examples/source-80crop.jpg',
|
|
'.assets/examples/source-70crop.jpg',
|
|
'.assets/examples/source-60crop.jpg'
|
|
]
|
|
for source_path in source_paths:
|
|
source_frame = read_static_image(source_path)
|
|
face = get_one_face(source_frame)
|
|
|
|
assert isinstance(face, Face)
|