facefusion/facefusion/processors/frame/modules/frame_enhancer.py
Henry Ruhs 319e3f9652
Next (#544)
* Modernize CI

* Modernize CI

* Modernize CI

* Implement dynamic config (#518)

* Implement dynamic config

* Fix apply config

* Move config to general

* Move config to general

* Move config to general

* Add Windows installer

* Add --open-browser

* Add Windows installer part2

* Use non-commercial license for the installer

* Fix create environment in installer

* Fix openvino for installer

* Fix conda for installer

* Fix conda for installer, Remove python and pip as it is part of conda

* Improve installer - guess the path

* Fix CI

* Add missing accept-source-agreements to installer

* Install WinGet

* Improve WinGet installation steps

* Use absolute path for winget

* More installer polishing

* Add final page to installer, disable version check for Gradio

* Remove finish page again

* Use NEXT for metadata

* Support for /S mode

* Use winget-less approach

* Improve Conda uninstall

* Improve code using platform helpers (#529)

* Update dependencies

* Feat/fix windows unicode paths (#531)

* Fix the Windows unicode path dilemma

* Update dependencies

* Fix the Windows unicode path dilemma part2

* Remove conda environment on uninstall

* Fix uninstall command

* Install apps for local user only

* Add ultra sharp

* Add clear reality

* Update README and FUNDING

* Update FUNDING.yml

* Prevent preview of large videos in Gradio (#540)

* Fix order

* Refactor temporary file management, Use temporary file for image processing (#542)

* Allow webm on target component

* Reduce mosaic effect for frame processors

* clear static faces on trim frame changes

* Fix trim frame component

* Downgrade openvino dependency

* Prepare next release

* Move get_short_path to filesystem, Add/Improve some testing

* Prepare installer, Prevent infinite loop for sanitize_path_for_windows

* Introduce execution device id

* Introduce execution device id

* Seems like device id can be a string

* Seems like device id can be a string

* Make Intel Arc work with OpenVINOExecution

* Use latest Git

* Update wording

* Fix create_float_range

* Update preview

* Fix Git link
2024-05-19 15:22:03 +02:00

264 lines
10 KiB
Python

from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
from time import sleep
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, process_manager, logger, wording
from facefusion.face_analyser import clear_face_analyser
from facefusion.content_analyser import clear_content_analyser
from facefusion.execution import apply_execution_provider_options
from facefusion.normalizer import normalize_output_path
from facefusion.thread_helper import thread_lock, conditional_thread_semaphore
from facefusion.typing import Face, VisionFrame, UpdateProgress, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.common_helper import create_metavar
from facefusion.filesystem import is_file, resolve_relative_path, is_image, is_video
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, write_image, merge_tile_frames, create_tile_frames
from facefusion.processors.frame.typings import FrameEnhancerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
FRAME_PROCESSOR = None
NAME = __name__.upper()
MODELS : ModelSet =\
{
'clear_reality_x4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/clear_reality_x4.onnx',
'path': resolve_relative_path('../.assets/models/clear_reality_x4.onnx'),
'size': (128, 8, 4),
'scale': 4
},
'lsdir_x4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/lsdir_x4.onnx',
'path': resolve_relative_path('../.assets/models/lsdir_x4.onnx'),
'size': (128, 8, 4),
'scale': 4
},
'nomos8k_sc_x4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/nomos8k_sc_x4.onnx',
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.onnx'),
'size': (128, 8, 4),
'scale': 4
},
'real_esrgan_x2':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x2.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.onnx'),
'size': (256, 16, 8),
'scale': 2
},
'real_esrgan_x2_fp16':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x2_fp16.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.onnx'),
'size': (256, 16, 8),
'scale': 2
},
'real_esrgan_x4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x4.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.onnx'),
'size': (256, 16, 8),
'scale': 4
},
'real_esrgan_x4_fp16':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_esrgan_x4_fp16.onnx',
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.onnx'),
'size': (256, 16, 8),
'scale': 4
},
'real_hatgan_x4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/real_hatgan_x4.onnx',
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.onnx'),
'size': (256, 16, 8),
'scale': 4
},
'span_kendata_x4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/span_kendata_x4.onnx',
'path': resolve_relative_path('../.assets/models/span_kendata_x4.onnx'),
'size': (128, 8, 4),
'scale': 4
},
'ultra_sharp_x4':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/ultra_sharp_x4.onnx',
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.onnx'),
'size': (128, 8, 4),
'scale': 4
}
}
OPTIONS : Optional[OptionsWithModel] = None
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with thread_lock():
while process_manager.is_checking():
sleep(0.5)
if FRAME_PROCESSOR is None:
model_path = get_options('model').get('path')
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_device_id, facefusion.globals.execution_providers))
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.frame_enhancer_model]
}
return OPTIONS.get(key)
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value
def register_args(program : ArgumentParser) -> None:
program.add_argument('--frame-enhancer-model', help = wording.get('help.frame_enhancer_model'), default = config.get_str_value('frame_processors.frame_enhancer_model', 'span_kendata_x4'), choices = frame_processors_choices.frame_enhancer_models)
program.add_argument('--frame-enhancer-blend', help = wording.get('help.frame_enhancer_blend'), type = int, default = config.get_int_value('frame_processors.frame_enhancer_blend', '80'), choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range))
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.frame_enhancer_model = args.frame_enhancer_model
frame_processors_globals.frame_enhancer_blend = args.frame_enhancer_blend
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download:
process_manager.check()
conditional_download(download_directory_path, [ model_url ])
process_manager.end()
return is_file(model_path)
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
if not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path):
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
def enhance_frame(temp_vision_frame : VisionFrame) -> VisionFrame:
frame_processor = get_frame_processor()
size = get_options('model').get('size')
scale = get_options('model').get('scale')
temp_height, temp_width = temp_vision_frame.shape[:2]
tile_vision_frames, pad_width, pad_height = create_tile_frames(temp_vision_frame, size)
for index, tile_vision_frame in enumerate(tile_vision_frames):
with conditional_thread_semaphore(facefusion.globals.execution_providers):
tile_vision_frame = frame_processor.run(None,
{
frame_processor.get_inputs()[0].name : prepare_tile_frame(tile_vision_frame)
})[0]
tile_vision_frames[index] = normalize_tile_frame(tile_vision_frame)
merge_vision_frame = merge_tile_frames(tile_vision_frames, temp_width * scale, temp_height * scale, pad_width * scale, pad_height * scale, (size[0] * scale, size[1] * scale, size[2] * scale))
temp_vision_frame = blend_frame(temp_vision_frame, merge_vision_frame)
return temp_vision_frame
def prepare_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame:
vision_tile_frame = numpy.expand_dims(vision_tile_frame[:, :, ::-1], axis = 0)
vision_tile_frame = vision_tile_frame.transpose(0, 3, 1, 2)
vision_tile_frame = vision_tile_frame.astype(numpy.float32) / 255
return vision_tile_frame
def normalize_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame:
vision_tile_frame = vision_tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255
vision_tile_frame = vision_tile_frame.clip(0, 255).astype(numpy.uint8)[:, :, ::-1]
return vision_tile_frame
def blend_frame(temp_vision_frame : VisionFrame, merge_vision_frame : VisionFrame) -> VisionFrame:
frame_enhancer_blend = 1 - (frame_processors_globals.frame_enhancer_blend / 100)
temp_vision_frame = cv2.resize(temp_vision_frame, (merge_vision_frame.shape[1], merge_vision_frame.shape[0]))
temp_vision_frame = cv2.addWeighted(temp_vision_frame, frame_enhancer_blend, merge_vision_frame, 1 - frame_enhancer_blend, 0)
return temp_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass
def process_frame(inputs : FrameEnhancerInputs) -> VisionFrame:
target_vision_frame = inputs.get('target_vision_frame')
return enhance_frame(target_vision_frame)
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)