facefusion/facefusion/processors/frame/modules/lip_syncer.py
Henry Ruhs 6e67d7bff6
2.4.1 (#442)
* Update official url for cuda 12-2 wheels

* Fix preview for audio to image

* Prevent download loop when remote is unreachable

* Prevent download loop when remote is unreachable

* changes (#444)

* Tidy up monkey patch

* Use cpu core count for concurrency count

* Dynamic concurrency_count for ideal Gradio performance

* Conditional download face analyser models

* Fix testing via pre_check()

* Introduce checking to process manager for blocking the UI

* Introduce checking to process manager for blocking the UI

* Introduce checking to process manager for blocking the UI

* Introduce checking to process manager for blocking the UI

* Move the blocking while model download to the correct position

* Remove unused imports

---------

Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com>
2024-03-20 10:02:08 +01:00

255 lines
11 KiB
Python
Executable File

from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
from time import sleep
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, process_manager, logger, wording
from facefusion.execution import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_mouth_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, warp_face_by_bounding_box, paste_back, create_bounding_box_from_face_landmark_68
from facefusion.face_store import get_reference_faces
from facefusion.content_analyser import clear_content_analyser
from facefusion.normalizer import normalize_output_path
from facefusion.typing import Face, VisionFrame, UpdateProcess, ProcessMode, ModelSet, OptionsWithModel, AudioFrame, QueuePayload
from facefusion.filesystem import is_file, has_audio, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.audio import read_static_audio, get_audio_frame, create_empty_audio_frame
from facefusion.filesystem import is_image, is_video, filter_audio_paths
from facefusion.common_helper import get_first
from facefusion.vision import read_image, write_image, read_static_image
from facefusion.processors.frame.typings import LipSyncerInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
FRAME_PROCESSOR = None
MODEL_MATRIX = None
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = __name__.upper()
MODELS : ModelSet =\
{
'wav2lip_gan':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/wav2lip_gan.onnx',
'path': resolve_relative_path('../.assets/models/wav2lip_gan.onnx'),
}
}
OPTIONS : Optional[OptionsWithModel] = None
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with THREAD_LOCK:
while process_manager.is_checking():
sleep(0.5)
if FRAME_PROCESSOR is None:
model_path = get_options('model').get('path')
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers))
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.lip_syncer_model]
}
return OPTIONS.get(key)
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value
def register_args(program : ArgumentParser) -> None:
program.add_argument('--lip-syncer-model', help = wording.get('help.lip_syncer_model'), default = config.get_str_value('frame_processors.lip_syncer_model', 'wav2lip_gan'), choices = frame_processors_choices.lip_syncer_models)
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.lip_syncer_model = args.lip_syncer_model
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
process_manager.check()
conditional_download(download_directory_path, [ model_url ])
process_manager.end()
return True
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
elif not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True
def pre_process(mode : ProcessMode) -> bool:
if not has_audio(facefusion.globals.source_paths):
logger.error(wording.get('select_audio_source') + wording.get('exclamation_mark'), NAME)
return False
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path):
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
read_static_audio.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder()
clear_face_parser()
def sync_lip(target_face : Face, temp_audio_frame : AudioFrame, temp_vision_frame : VisionFrame) -> VisionFrame:
frame_processor = get_frame_processor()
crop_mask_list = []
temp_audio_frame = prepare_audio_frame(temp_audio_frame)
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmarks.get('5/68'), 'ffhq_512', (512, 512))
if numpy.any(target_face.landmarks.get('68')):
face_landmark_68 = cv2.transform(target_face.landmarks.get('68').reshape(1, -1, 2), affine_matrix).reshape(-1, 2)
bounding_box = create_bounding_box_from_face_landmark_68(face_landmark_68)
bounding_box[1] -= numpy.abs(bounding_box[3] - bounding_box[1]) * 0.125
mouth_mask = create_mouth_mask(face_landmark_68)
crop_mask_list.append(mouth_mask)
else:
bounding_box = target_face.bounding_box
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding)
crop_mask_list.append(box_mask)
if 'occlusion' in facefusion.globals.face_mask_types:
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_mask_list.append(occlusion_mask)
close_vision_frame, close_matrix = warp_face_by_bounding_box(crop_vision_frame, bounding_box, (96, 96))
close_vision_frame = prepare_crop_frame(close_vision_frame)
close_vision_frame = frame_processor.run(None,
{
'source': temp_audio_frame,
'target': close_vision_frame
})[0]
crop_vision_frame = normalize_crop_frame(close_vision_frame)
crop_vision_frame = cv2.warpAffine(crop_vision_frame, cv2.invertAffineTransform(close_matrix), (512, 512), borderMode = cv2.BORDER_REPLICATE)
crop_mask = numpy.minimum.reduce(crop_mask_list)
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
return paste_vision_frame
def prepare_audio_frame(temp_audio_frame : AudioFrame) -> AudioFrame:
temp_audio_frame = numpy.maximum(numpy.exp(-5 * numpy.log(10)), temp_audio_frame)
temp_audio_frame = numpy.log10(temp_audio_frame) * 1.6 + 3.2
temp_audio_frame = temp_audio_frame.clip(-4, 4).astype(numpy.float32)
temp_audio_frame = numpy.expand_dims(temp_audio_frame, axis = (0, 1))
return temp_audio_frame
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
prepare_vision_frame = crop_vision_frame.copy()
prepare_vision_frame[:, 48:] = 0
crop_vision_frame = numpy.concatenate((prepare_vision_frame, crop_vision_frame), axis = 3)
crop_vision_frame = crop_vision_frame.transpose(0, 3, 1, 2).astype('float32') / 255.0
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = crop_vision_frame[0].transpose(1, 2, 0)
crop_vision_frame = crop_vision_frame.clip(0, 1) * 255
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)
return crop_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass
def process_frame(inputs : LipSyncerInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
source_audio_frame = inputs.get('source_audio_frame')
target_vision_frame = inputs.get('target_vision_frame')
if facefusion.globals.face_selector_mode == 'many':
many_faces = get_many_faces(target_vision_frame)
if many_faces:
for target_face in many_faces:
target_vision_frame = sync_lip(target_face, source_audio_frame, target_vision_frame)
if facefusion.globals.face_selector_mode == 'one':
target_face = get_one_face(target_vision_frame)
if target_face:
target_vision_frame = sync_lip(target_face, source_audio_frame, target_vision_frame)
if facefusion.globals.face_selector_mode == 'reference':
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = sync_lip(similar_face, source_audio_frame, target_vision_frame)
return target_vision_frame
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProcess) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_audio_path = get_first(filter_audio_paths(source_paths))
for queue_payload in process_manager.manage(queue_payloads):
frame_number = queue_payload['frame_number']
target_vision_path = queue_payload['frame_path']
source_audio_frame = get_audio_frame(source_audio_path, facefusion.globals.output_video_fps, frame_number)
if not numpy.any(source_audio_frame):
source_audio_frame = create_empty_audio_frame()
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_audio_frame': source_audio_frame,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress()
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_audio_frame = create_empty_audio_frame()
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_audio_frame': source_audio_frame,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)