facefusion/facefusion/processors/frame/modules/face_swapper.py
Henry Ruhs 7609df6747
Next (#436)
* Rename landmark 5 variables

* Mark as NEXT

* Render tabs for multiple ui layout usage

* Allow many face detectors at once, Add face detector tweaks

* Remove face detector tweaks for now (kinda placebo)

* Fix lint issues

* Allow rendering the landmark-5 and landmark-5/68 via debugger

* Fix naming

* Convert face landmark based on confidence score

* Convert face landmark based on confidence score

* Add scrfd face detector model (#397)

* Add scrfd face detector model

* Switch to scrfd_2.5g.onnx model

* Just some renaming

* Downgrade OpenCV, Add SYSTEM_VERSION_COMPAT=0 for MacOS

* Improve naming

* prepare detect frame outside of semaphore

* Feat/process manager (#399)

* Minor naming

* Introduce process manager to start and stop

* Introduce process manager to start and stop

* Introduce process manager to start and stop

* Introduce process manager to start and stop

* Introduce process manager to start and stop

* Remove useless test for now

* Avoid useless variables

* Show stop once is_processing is True

* Allow to stop ffmpeg processing too

* Implement output image resolution (#403)

* Implement output image resolution

* Reorder code

* Simplify output logic and therefore fix bug

* Frame-enhancer-onnx (#404)

* changes

* changes

* changes

* changes

* add models

* update workflow

* Some cleanup

* Some cleanup

* Feat/frame enhancer polishing (#410)

* Some cleanup

* Polish the frame enhancer

* Frame Enhancer: Add more models, optimize processing

* Minor changes

* Improve readability of create_tile_frames and merge_tile_frames

* We don't have enough models yet

* Feat/face landmarker score (#413)

* Introduce face landmarker score

* Fix testing

* Fix testing

* Use release for score related sliders

* Reduce face landmark fallbacks

* Scores and landmarks in Face dict, Change color-theme in face debugger

* Scores and landmarks in Face dict, Change color-theme in face debugger

* Fix some naming

* Add 8K support (for whatever reasons)

* Fix testing

* Using get() for face.landmarks

* Introduce statistics

* More statistics

* Limit the histogram equalization

* Enable queue() for default layout

* Improve copy_image()

* Fix error when switching detector model

* Always set UI values with globals if possible

* Use different logic for output image and output video resolutions

* Enforce re-download if file size is off

* Remove unused method

* Remove unused method

* Remove unused warning filter

* Improved output path normalization (#419)

* Handle some exceptions

* Handle some exceptions

* Cleanup

* Prevent countless thread locks

* Listen to user feedback

* Fix webp edge case

* Feat/cuda device detection (#424)

* Introduce cuda device detection

* Introduce cuda device detection

* it's gtx

* Move logic to run_nvidia_smi()

* Finalize execution device naming

* Finalize execution device naming

* Merge execution_helper.py to execution.py

* Undo lowercase of values

* Undo lowercase of values

* Finalize naming

* Add missing entry to ini

* fix lip_syncer preview (#426)

* fix lip_syncer preview

* change

* Refresh preview on trim changes

* Cleanup frame enhancers and remove useless scale in merge_video() (#428)

* Keep lips over the whole video once lip syncer is enabled (#430)

* Keep lips over the whole video once lip syncer is enabled

* changes

* changes

* Fix spacing

* Use empty audio frame on silence

* Use empty audio frame on silence

* Fix ConfigParser encoding (#431)

facefusion.ini is UTF8 encoded but config.py doesn't specify encoding which results in corrupted entries when non english characters are used. 

Affected entries:
source_paths
target_path
output_path

* Adjust spacing

* Improve the GTX 16 series detection

* Use general exception to catch ParseError

* Use general exception to catch ParseError

* Host frame enhancer models4

* Use latest onnxruntime

* Minor changes in benchmark UI

* Different approach to cancel ffmpeg process

* Add support for amd amf encoders (#433)

* Add amd_amf encoders

* remove -rc cqp from amf encoder parameters

* Improve terminal output, move success messages to debug mode

* Improve terminal output, move success messages to debug mode

* Minor update

* Minor update

* onnxruntime 1.17.1 matches cuda 12.2

* Feat/improved scaling (#435)

* Prevent useless temp upscaling, Show resolution and fps in terminal output

* Remove temp frame quality

* Remove temp frame quality

* Tiny cleanup

* Default back to png for temp frames, Remove pix_fmt from frame extraction due mjpeg error

* Fix inswapper fallback by onnxruntime

* Fix inswapper fallback by major onnxruntime

* Fix inswapper fallback by major onnxruntime

* Add testing for vision restrict methods

* Fix left / right face mask regions, add left-ear and right-ear

* Flip right and left again

* Undo ears - does not work with box mask

* Prepare next release

* Fix spacing

* 100% quality when using jpg for temp frames

* Use span_kendata_x4 as default as of speed

* benchmark optimal tile and pad

* Undo commented out code

* Add real_esrgan_x4_fp16 model

* Be strict when using many face detectors

---------

Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com>
Co-authored-by: aldemoth <159712934+aldemoth@users.noreply.github.com>
2024-03-14 19:56:54 +01:00

362 lines
15 KiB
Python
Executable File

from typing import Any, List, Literal, Optional
from argparse import ArgumentParser
import threading
import numpy
import onnx
import onnxruntime
from onnx import numpy_helper
import facefusion.globals
import facefusion.processors.frame.core as frame_processors
from facefusion import config, process_manager, logger, wording
from facefusion.execution import apply_execution_provider_options
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
from facefusion.face_helper import warp_face_by_face_landmark_5, paste_back
from facefusion.face_store import get_reference_faces
from facefusion.common_helper import extract_major_version
from facefusion.content_analyser import clear_content_analyser
from facefusion.normalizer import normalize_output_path
from facefusion.typing import Face, Embedding, VisionFrame, UpdateProcess, ProcessMode, ModelSet, OptionsWithModel, QueuePayload
from facefusion.filesystem import is_file, is_image, has_image, is_video, filter_image_paths, resolve_relative_path
from facefusion.download import conditional_download, is_download_done
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
from facefusion.processors.frame.typings import FaceSwapperInputs
from facefusion.processors.frame import globals as frame_processors_globals
from facefusion.processors.frame import choices as frame_processors_choices
FRAME_PROCESSOR = None
MODEL_MATRIX = None
THREAD_LOCK : threading.Lock = threading.Lock()
NAME = __name__.upper()
MODELS : ModelSet =\
{
'blendswap_256':
{
'type': 'blendswap',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/blendswap_256.onnx',
'path': resolve_relative_path('../.assets/models/blendswap_256.onnx'),
'template': 'ffhq_512',
'size': (256, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'inswapper_128':
{
'type': 'inswapper',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx',
'path': resolve_relative_path('../.assets/models/inswapper_128.onnx'),
'template': 'arcface_128_v2',
'size': (128, 128),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'inswapper_128_fp16':
{
'type': 'inswapper',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128_fp16.onnx',
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx'),
'template': 'arcface_128_v2',
'size': (128, 128),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'simswap_256':
{
'type': 'simswap',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_256.onnx',
'path': resolve_relative_path('../.assets/models/simswap_256.onnx'),
'template': 'arcface_112_v1',
'size': (256, 256),
'mean': [ 0.485, 0.456, 0.406 ],
'standard_deviation': [ 0.229, 0.224, 0.225 ]
},
'simswap_512_unofficial':
{
'type': 'simswap',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_512_unofficial.onnx',
'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx'),
'template': 'arcface_112_v1',
'size': (512, 512),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
},
'uniface_256':
{
'type': 'uniface',
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/uniface_256.onnx',
'path': resolve_relative_path('../.assets/models/uniface_256.onnx'),
'template': 'ffhq_512',
'size': (256, 256),
'mean': [ 0.0, 0.0, 0.0 ],
'standard_deviation': [ 1.0, 1.0, 1.0 ]
}
}
OPTIONS : Optional[OptionsWithModel] = None
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with THREAD_LOCK:
if FRAME_PROCESSOR is None:
model_path = get_options('model').get('path')
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers))
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def get_model_matrix() -> Any:
global MODEL_MATRIX
with THREAD_LOCK:
if MODEL_MATRIX is None:
model_path = get_options('model').get('path')
model = onnx.load(model_path)
MODEL_MATRIX = numpy_helper.to_array(model.graph.initializer[-1])
return MODEL_MATRIX
def clear_model_matrix() -> None:
global MODEL_MATRIX
MODEL_MATRIX = None
def get_options(key : Literal['model']) -> Any:
global OPTIONS
if OPTIONS is None:
OPTIONS =\
{
'model': MODELS[frame_processors_globals.face_swapper_model]
}
return OPTIONS.get(key)
def set_options(key : Literal['model'], value : Any) -> None:
global OPTIONS
OPTIONS[key] = value
def register_args(program : ArgumentParser) -> None:
onnxruntime_version = extract_major_version(onnxruntime.__version__)
if onnxruntime_version > (1, 16):
face_swapper_model_fallback = 'inswapper_128'
else:
face_swapper_model_fallback = 'inswapper_128_fp16'
program.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('frame_processors.face_swapper_model', face_swapper_model_fallback), choices = frame_processors_choices.face_swapper_models)
def apply_args(program : ArgumentParser) -> None:
args = program.parse_args()
frame_processors_globals.face_swapper_model = args.face_swapper_model
if args.face_swapper_model == 'blendswap_256':
facefusion.globals.face_recognizer_model = 'arcface_blendswap'
if args.face_swapper_model == 'inswapper_128' or args.face_swapper_model == 'inswapper_128_fp16':
facefusion.globals.face_recognizer_model = 'arcface_inswapper'
if args.face_swapper_model == 'simswap_256' or args.face_swapper_model == 'simswap_512_unofficial':
facefusion.globals.face_recognizer_model = 'arcface_simswap'
if args.face_swapper_model == 'uniface_256':
facefusion.globals.face_recognizer_model = 'arcface_uniface'
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_url = get_options('model').get('url')
conditional_download(download_directory_path, [ model_url ])
return True
def post_check() -> bool:
model_url = get_options('model').get('url')
model_path = get_options('model').get('path')
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
return False
elif not is_file(model_path):
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
return False
return True
def pre_process(mode : ProcessMode) -> bool:
if not has_image(facefusion.globals.source_paths):
logger.error(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
return False
source_image_paths = filter_image_paths(facefusion.globals.source_paths)
source_frames = read_static_images(source_image_paths)
for source_frame in source_frames:
if not get_one_face(source_frame):
logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
return False
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
return False
if mode == 'output' and not normalize_output_path(facefusion.globals.target_path, facefusion.globals.output_path):
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if facefusion.globals.video_memory_strategy == 'strict' or facefusion.globals.video_memory_strategy == 'moderate':
clear_frame_processor()
clear_model_matrix()
if facefusion.globals.video_memory_strategy == 'strict':
clear_face_analyser()
clear_content_analyser()
clear_face_occluder()
clear_face_parser()
def swap_face(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_options('model').get('template')
model_size = get_options('model').get('size')
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmarks.get('5/68'), model_template, model_size)
crop_mask_list = []
if 'box' in facefusion.globals.face_mask_types:
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding)
crop_mask_list.append(box_mask)
if 'occlusion' in facefusion.globals.face_mask_types:
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_mask_list.append(occlusion_mask)
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
crop_vision_frame = apply_swap(source_face, crop_vision_frame)
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
if 'region' in facefusion.globals.face_mask_types:
region_mask = create_region_mask(crop_vision_frame, facefusion.globals.face_mask_regions)
crop_mask_list.append(region_mask)
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
temp_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
return temp_vision_frame
def apply_swap(source_face : Face, crop_vision_frame : VisionFrame) -> VisionFrame:
frame_processor = get_frame_processor()
model_type = get_options('model').get('type')
frame_processor_inputs = {}
for frame_processor_input in frame_processor.get_inputs():
if frame_processor_input.name == 'source':
if model_type == 'blendswap' or model_type == 'uniface':
frame_processor_inputs[frame_processor_input.name] = prepare_source_frame(source_face)
else:
frame_processor_inputs[frame_processor_input.name] = prepare_source_embedding(source_face)
if frame_processor_input.name == 'target':
frame_processor_inputs[frame_processor_input.name] = crop_vision_frame
crop_vision_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
return crop_vision_frame
def prepare_source_frame(source_face : Face) -> VisionFrame:
model_type = get_options('model').get('type')
source_vision_frame = read_static_image(facefusion.globals.source_paths[0])
if model_type == 'blendswap':
source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmarks.get('5/68'), 'arcface_112_v2', (112, 112))
if model_type == 'uniface':
source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmarks.get('5/68'), 'ffhq_512', (256, 256))
source_vision_frame = source_vision_frame[:, :, ::-1] / 255.0
source_vision_frame = source_vision_frame.transpose(2, 0, 1)
source_vision_frame = numpy.expand_dims(source_vision_frame, axis = 0).astype(numpy.float32)
return source_vision_frame
def prepare_source_embedding(source_face : Face) -> Embedding:
model_type = get_options('model').get('type')
if model_type == 'inswapper':
model_matrix = get_model_matrix()
source_embedding = source_face.embedding.reshape((1, -1))
source_embedding = numpy.dot(source_embedding, model_matrix) / numpy.linalg.norm(source_embedding)
else:
source_embedding = source_face.normed_embedding.reshape(1, -1)
return source_embedding
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
model_mean = get_options('model').get('mean')
model_standard_deviation = get_options('model').get('standard_deviation')
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
crop_vision_frame = (crop_vision_frame - model_mean) / model_standard_deviation
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1)
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0).astype(numpy.float32)
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0)
crop_vision_frame = (crop_vision_frame * 255.0).round()
crop_vision_frame = crop_vision_frame[:, :, ::-1]
return crop_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
return swap_face(source_face, target_face, temp_vision_frame)
def process_frame(inputs : FaceSwapperInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
source_face = inputs.get('source_face')
target_vision_frame = inputs.get('target_vision_frame')
if facefusion.globals.face_selector_mode == 'many':
many_faces = get_many_faces(target_vision_frame)
if many_faces:
for target_face in many_faces:
target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
if facefusion.globals.face_selector_mode == 'one':
target_face = get_one_face(target_vision_frame)
if target_face:
target_vision_frame = swap_face(source_face, target_face, target_vision_frame)
if facefusion.globals.face_selector_mode == 'reference':
similar_faces = find_similar_faces(reference_faces, target_vision_frame, facefusion.globals.reference_face_distance)
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = swap_face(source_face, similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProcess) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_frames = read_static_images(source_paths)
source_face = get_average_face(source_frames)
for queue_payload in process_manager.manage(queue_payloads):
target_vision_path = queue_payload['frame_path']
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_face': source_face,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress()
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
source_frames = read_static_images(source_paths)
source_face = get_average_face(source_frames)
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_face': source_face,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)