
* Replace audio whenever set via source * add H264_qsv&HEVC_qsv (#768) * Update ffmpeg.py * Update choices.py * Update typing.py * Fix spaces and newlines * Fix return type * Introduce hififace swapper * Disable stream for expression restorer * Webcam polishing part1 (#796) * Cosmetics on ignore comments * Testing for replace audio * Testing for restore audio * Testing for restore audio * Fix replace_audio() * Remove shortest and use fixed video duration * Remove shortest and use fixed video duration * Prevent duplicate entries to local PATH * Do hard exit on invalid args * Need for Python 3.10 * Fix state of face selector * Fix OpenVINO by aliasing GPU.0 to GPU * Fix OpenVINO by aliasing GPU.0 to GPU * Fix/age modifier styleganex 512 (#798) * fix * styleganex template * changes * changes * fix occlusion mask * add age modifier scale * change * change * hardcode * Cleanup * Use model_sizes and model_templates variables * No need for prepare when just 2 lines of code * Someone used spaces over tabs * Revert back [0][0] --------- Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> * Feat/update gradio5 (#799) * Update to Gradio 5 * Remove overrides for Gradio * Fix dark mode for Gradio * Polish errors * More styles for tabs and co * Make slider inputs and reset like a unit * Make slider inputs and reset like a unit * Adjust naming * Improved color matching (#800) * aura fix * fix import * move to vision.py * changes * changes * changes * changes * further reduction * add test * better test * change name * Minor cleanup * Minor cleanup * Minor cleanup * changes (#801) * Switch to official assets repo * Add __pycache__ to gitignore * Gradio pinned python-multipart to 0.0.12 * Update dependencies * Feat/temp path second try (#802) * Terminate base directory from temp helper * Partial adjust program codebase * Move arguments around * Make `-j` absolete * Resolve args * Fix job register keys * Adjust date test * Finalize temp path * Update onnxruntime * Update dependencies * Adjust color for checkboxes * Revert due terrible performance * Fix/enforce vp9 for webm (#805) * Simple fix to enforce vp9 for webm * Remove suggest methods from program helper * Cleanup ffmpeg.py a bit * Update onnxruntime (second try) * Update onnxruntime (second try) * Remove cudnn_conv_algo_search tweaks * Remove cudnn_conv_algo_search tweaks * changes * add both mask instead of multiply * adaptive color correction * changes * remove model size requirement * changes * add to facefusion.ini * changes * changes * changes * Add namespace for dfm creators * Release five frame enhancer models * Remove vendor from model name * Remove vendor from model name * changes * changes * changes * changes * Feat/download providers (#809) * Introduce download providers * update processors download method * add ui * Fix CI * Adjust UI component order, Use download resolver for benchmark * Remove is_download_done() * Introduce download provider set, Remove choices method from execution, cast all dict keys() via list() * Fix spacing --------- Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> * Fix model paths for 3.1.0 * Introduce bulk-run (#810) * Introduce bulk-run * Make bulk run bullet proof * Integration test for bulk-run * new alignment * Add safer global named resolve_file_pattern() (#811) * Allow bulk runner with target pattern only * changes * changes * Update Python to 3.12 for CI (#813) * changes * Improve NVIDIA device lookups * Rename template key to deepfacelive * Fix name * Improve resolve download * Rename bulk-run to batch-run * Make deep swapper inputs universal * Add more deepfacelive models * Use different morph value * Feat/simplify hashes sources download (#814) * Extract download directory path from assets path * Fix lint * Fix force-download command, Fix urls in frame enhancer * changes * fix warp_face_by_bounding_box dtype error * DFM Morph (#816) * changes * Improve wording, Replace [None], SideQuest: clean forward() of age modifier * SideQuest: clean forward() of face enhancer --------- Co-authored-by: henryruhs <info@henryruhs.com> * Fix preview refresh after slide * Add more deepfacelive models (#817) * Add more deepfacelive models * Add more deepfacelive models * Fix deep swapper sizes * Kill accent colors, Number input styles for Chrome * Simplify thumbnail-item looks * Fix first black screen * Introduce model helper * ci.yml: Add macOS on ARM64 to the testing (#818) * ci.yml: Add macOS on ARM64 to the testing * ci.yml: uses: AnimMouse/setup-ffmpeg@v1 * ci.yml: strategy: matrix: os: macos-latest, * - name: Set up FFmpeg * Update .github/workflows/ci.yml * Update ci.yml --------- Co-authored-by: Henry Ruhs <info@henryruhs.com> * Show/hide morph slider for deep swapper (#822) * remove dfl_head and update dfl_whole_face template * Add deep swapper models by Mats * Add deep swapper models by Druuzil * Add deep swapper models by Rumateus * Implement face enhancer weight for codeformer, Side Quest: has proces… (#823) * Implement face enhancer weight for codeformer, Side Quest: has processor checks * Fix typo * Fix face enhancer blend in UI * Use static model set creation * Add deep swapper models by Jen * Introduce create_static_model_set() everywhere (#824) * Move clear over to the UI (#825) * Fix model key * Undo restore_audio() * Switch to latest XSeg * Switch to latest XSeg * Switch to latest XSeg * Use resolve_download_url() everywhere, Vanish --skip-download flag * Fix resolve_download_url * Fix space * Kill resolve_execution_provider_keys() and move fallbacks where they belong * Kill resolve_execution_provider_keys() and move fallbacks where they belong * Remove as this does not work * Change TempFrameFormat order * Fix CoreML partially * Remove duplicates (Rumateus is the creator) * Add deep swapper models by Edel * Introduce download scopes (#826) * Introduce download scopes * Limit download scopes to force-download command * Change source-paths behaviour * Fix space * Update README * Rename create_log_level_program to create_misc_program * Fix wording * Fix wording * Update dependencies * Use tolerant for video_memory_strategy in benchmark * Feat/ffmpeg with progress (#827) * FFmpeg with progress bar * Fix typing * FFmpeg with progress bar part2 * Restore streaming wording * Change order in choices and typing * Introduce File using list_directory() (#830) * Feat/local deep swapper models (#832) * Local model support for deep swapper * Local model support for deep swapper part2 * Local model support for deep swapper part3 * Update yet another dfm by Druuzil * Refactor/choices and naming (#833) * Refactor choices, imports and naming * Refactor choices, imports and naming * Fix styles for tabs, Restore toast * Update yet another dfm by Druuzil * Feat/face masker models (#834) * Introduce face masker models * Introduce face masker models * Introduce face masker models * Register needed step keys * Provide different XSeg models * Simplify model context * Fix out of range for trim frame, Fix ffmpeg extraction count (#836) * Fix out of range for trim frame, Fix ffmpeg extraction count * Move restrict of trim frame to the core, Make sure all values are within the range * Fix and merge testing * Fix typing * Add region mask for deep swapper * Adjust wording * Move FACE_MASK_REGIONS to choices * Update dependencies * Feat/download provider fallback (#837) * Introduce download providers fallback, Use CURL everywhre * Fix CI * Use readlines() over readline() to avoid while * Use readlines() over readline() to avoid while * Use readlines() over readline() to avoid while * Use communicate() over wait() * Minor updates for testing * Stop webcam on source image change * Feat/webcam improvements (#838) * Detect available webcams * Fix CI, Move webcam id dropdown to the sidebar, Disable warnings * Fix CI * Remove signal on hard_exit() to prevent exceptions * Fix border color in toast timer * Prepare release * Update preview * Update preview * Hotfix progress bar --------- Co-authored-by: DDXDB <38449595+DDXDB@users.noreply.github.com> Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
223 lines
11 KiB
Python
Executable File
223 lines
11 KiB
Python
Executable File
from argparse import ArgumentParser
|
|
from typing import List
|
|
|
|
import cv2
|
|
import numpy
|
|
|
|
import facefusion.jobs.job_manager
|
|
import facefusion.jobs.job_store
|
|
import facefusion.processors.core as processors
|
|
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, logger, process_manager, state_manager, wording
|
|
from facefusion.face_analyser import get_many_faces, get_one_face
|
|
from facefusion.face_helper import warp_face_by_face_landmark_5
|
|
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
|
|
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
|
|
from facefusion.face_store import get_reference_faces
|
|
from facefusion.filesystem import in_directory, same_file_extension
|
|
from facefusion.processors import choices as processors_choices
|
|
from facefusion.processors.typing import FaceDebuggerInputs
|
|
from facefusion.program_helper import find_argument_group
|
|
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
|
from facefusion.vision import read_image, read_static_image, write_image
|
|
|
|
|
|
def get_inference_pool() -> InferencePool:
|
|
pass
|
|
|
|
|
|
def clear_inference_pool() -> None:
|
|
pass
|
|
|
|
|
|
def register_args(program : ArgumentParser) -> None:
|
|
group_processors = find_argument_group(program, 'processors')
|
|
if group_processors:
|
|
group_processors.add_argument('--face-debugger-items', help = wording.get('help.face_debugger_items').format(choices = ', '.join(processors_choices.face_debugger_items)), default = config.get_str_list('processors.face_debugger_items', 'face-landmark-5/68 face-mask'), choices = processors_choices.face_debugger_items, nargs = '+', metavar = 'FACE_DEBUGGER_ITEMS')
|
|
facefusion.jobs.job_store.register_step_keys([ 'face_debugger_items' ])
|
|
|
|
|
|
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
|
apply_state_item('face_debugger_items', args.get('face_debugger_items'))
|
|
|
|
|
|
def pre_check() -> bool:
|
|
return True
|
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool:
|
|
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
|
|
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__)
|
|
return False
|
|
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
|
|
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__)
|
|
return False
|
|
return True
|
|
|
|
|
|
def post_process() -> None:
|
|
read_static_image.cache_clear()
|
|
if state_manager.get_item('video_memory_strategy') == 'strict':
|
|
content_analyser.clear_inference_pool()
|
|
face_classifier.clear_inference_pool()
|
|
face_detector.clear_inference_pool()
|
|
face_landmarker.clear_inference_pool()
|
|
face_masker.clear_inference_pool()
|
|
face_recognizer.clear_inference_pool()
|
|
|
|
|
|
def debug_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
|
|
primary_color = (0, 0, 255)
|
|
primary_light_color = (100, 100, 255)
|
|
secondary_color = (0, 255, 0)
|
|
tertiary_color = (255, 255, 0)
|
|
bounding_box = target_face.bounding_box.astype(numpy.int32)
|
|
temp_vision_frame = temp_vision_frame.copy()
|
|
has_face_landmark_5_fallback = numpy.array_equal(target_face.landmark_set.get('5'), target_face.landmark_set.get('5/68'))
|
|
has_face_landmark_68_fallback = numpy.array_equal(target_face.landmark_set.get('68'), target_face.landmark_set.get('68/5'))
|
|
face_debugger_items = state_manager.get_item('face_debugger_items')
|
|
|
|
if 'bounding-box' in face_debugger_items:
|
|
x1, y1, x2, y2 = bounding_box
|
|
cv2.rectangle(temp_vision_frame, (x1, y1), (x2, y2), primary_color, 2)
|
|
|
|
if target_face.angle == 0:
|
|
cv2.line(temp_vision_frame, (x1, y1), (x2, y1), primary_light_color, 3)
|
|
elif target_face.angle == 180:
|
|
cv2.line(temp_vision_frame, (x1, y2), (x2, y2), primary_light_color, 3)
|
|
elif target_face.angle == 90:
|
|
cv2.line(temp_vision_frame, (x2, y1), (x2, y2), primary_light_color, 3)
|
|
elif target_face.angle == 270:
|
|
cv2.line(temp_vision_frame, (x1, y1), (x1, y2), primary_light_color, 3)
|
|
|
|
if 'face-mask' in face_debugger_items:
|
|
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), 'arcface_128_v2', (512, 512))
|
|
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
|
|
temp_size = temp_vision_frame.shape[:2][::-1]
|
|
crop_masks = []
|
|
|
|
if 'box' in state_manager.get_item('face_mask_types'):
|
|
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], 0, state_manager.get_item('face_mask_padding'))
|
|
crop_masks.append(box_mask)
|
|
|
|
if 'occlusion' in state_manager.get_item('face_mask_types'):
|
|
occlusion_mask = create_occlusion_mask(crop_vision_frame)
|
|
crop_masks.append(occlusion_mask)
|
|
|
|
if 'region' in state_manager.get_item('face_mask_types'):
|
|
region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions'))
|
|
crop_masks.append(region_mask)
|
|
|
|
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
|
|
crop_mask = (crop_mask * 255).astype(numpy.uint8)
|
|
inverse_vision_frame = cv2.warpAffine(crop_mask, inverse_matrix, temp_size)
|
|
inverse_vision_frame = cv2.threshold(inverse_vision_frame, 100, 255, cv2.THRESH_BINARY)[1]
|
|
inverse_vision_frame[inverse_vision_frame > 0] = 255 #type:ignore[operator]
|
|
inverse_contours = cv2.findContours(inverse_vision_frame, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[0]
|
|
cv2.drawContours(temp_vision_frame, inverse_contours, -1, tertiary_color if has_face_landmark_5_fallback else secondary_color, 2)
|
|
|
|
if 'face-landmark-5' in face_debugger_items and numpy.any(target_face.landmark_set.get('5')):
|
|
face_landmark_5 = target_face.landmark_set.get('5').astype(numpy.int32)
|
|
for index in range(face_landmark_5.shape[0]):
|
|
cv2.circle(temp_vision_frame, (face_landmark_5[index][0], face_landmark_5[index][1]), 3, primary_color, -1)
|
|
|
|
if 'face-landmark-5/68' in face_debugger_items and numpy.any(target_face.landmark_set.get('5/68')):
|
|
face_landmark_5_68 = target_face.landmark_set.get('5/68').astype(numpy.int32)
|
|
for index in range(face_landmark_5_68.shape[0]):
|
|
cv2.circle(temp_vision_frame, (face_landmark_5_68[index][0], face_landmark_5_68[index][1]), 3, tertiary_color if has_face_landmark_5_fallback else secondary_color, -1)
|
|
|
|
if 'face-landmark-68' in face_debugger_items and numpy.any(target_face.landmark_set.get('68')):
|
|
face_landmark_68 = target_face.landmark_set.get('68').astype(numpy.int32)
|
|
for index in range(face_landmark_68.shape[0]):
|
|
cv2.circle(temp_vision_frame, (face_landmark_68[index][0], face_landmark_68[index][1]), 3, tertiary_color if has_face_landmark_68_fallback else secondary_color, -1)
|
|
|
|
if 'face-landmark-68/5' in face_debugger_items and numpy.any(target_face.landmark_set.get('68')):
|
|
face_landmark_68 = target_face.landmark_set.get('68/5').astype(numpy.int32)
|
|
for index in range(face_landmark_68.shape[0]):
|
|
cv2.circle(temp_vision_frame, (face_landmark_68[index][0], face_landmark_68[index][1]), 3, tertiary_color, -1)
|
|
|
|
if bounding_box[3] - bounding_box[1] > 50 and bounding_box[2] - bounding_box[0] > 50:
|
|
top = bounding_box[1]
|
|
left = bounding_box[0] - 20
|
|
|
|
if 'face-detector-score' in face_debugger_items:
|
|
face_score_text = str(round(target_face.score_set.get('detector'), 2))
|
|
top = top + 20
|
|
cv2.putText(temp_vision_frame, face_score_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
|
|
|
|
if 'face-landmarker-score' in face_debugger_items:
|
|
face_score_text = str(round(target_face.score_set.get('landmarker'), 2))
|
|
top = top + 20
|
|
cv2.putText(temp_vision_frame, face_score_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, tertiary_color if has_face_landmark_5_fallback else secondary_color, 2)
|
|
|
|
if 'age' in face_debugger_items:
|
|
face_age_text = str(target_face.age.start) + '-' + str(target_face.age.stop)
|
|
top = top + 20
|
|
cv2.putText(temp_vision_frame, face_age_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
|
|
|
|
if 'gender' in face_debugger_items:
|
|
face_gender_text = target_face.gender
|
|
top = top + 20
|
|
cv2.putText(temp_vision_frame, face_gender_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
|
|
|
|
if 'race' in face_debugger_items:
|
|
face_race_text = target_face.race
|
|
top = top + 20
|
|
cv2.putText(temp_vision_frame, face_race_text, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, primary_color, 2)
|
|
|
|
return temp_vision_frame
|
|
|
|
|
|
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
|
|
pass
|
|
|
|
|
|
def process_frame(inputs : FaceDebuggerInputs) -> VisionFrame:
|
|
reference_faces = inputs.get('reference_faces')
|
|
target_vision_frame = inputs.get('target_vision_frame')
|
|
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
|
|
|
|
if state_manager.get_item('face_selector_mode') == 'many':
|
|
if many_faces:
|
|
for target_face in many_faces:
|
|
target_vision_frame = debug_face(target_face, target_vision_frame)
|
|
if state_manager.get_item('face_selector_mode') == 'one':
|
|
target_face = get_one_face(many_faces)
|
|
if target_face:
|
|
target_vision_frame = debug_face(target_face, target_vision_frame)
|
|
if state_manager.get_item('face_selector_mode') == 'reference':
|
|
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
|
|
if similar_faces:
|
|
for similar_face in similar_faces:
|
|
target_vision_frame = debug_face(similar_face, target_vision_frame)
|
|
return target_vision_frame
|
|
|
|
|
|
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
|
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
|
|
|
for queue_payload in process_manager.manage(queue_payloads):
|
|
target_vision_path = queue_payload['frame_path']
|
|
target_vision_frame = read_image(target_vision_path)
|
|
output_vision_frame = process_frame(
|
|
{
|
|
'reference_faces': reference_faces,
|
|
'target_vision_frame': target_vision_frame
|
|
})
|
|
write_image(target_vision_path, output_vision_frame)
|
|
update_progress(1)
|
|
|
|
|
|
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
|
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
|
target_vision_frame = read_static_image(target_path)
|
|
output_vision_frame = process_frame(
|
|
{
|
|
'reference_faces': reference_faces,
|
|
'target_vision_frame': target_vision_frame
|
|
})
|
|
write_image(output_path, output_vision_frame)
|
|
|
|
|
|
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
|
|
processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
|