facefusion/facefusion/processors/modules/lip_syncer.py
Henry Ruhs 7a09479fb5
3.1.0 (#839)
* Replace audio whenever set via source

* add H264_qsv&HEVC_qsv (#768)

* Update ffmpeg.py

* Update choices.py

* Update typing.py

* Fix spaces and newlines

* Fix return type

* Introduce hififace swapper

* Disable stream for expression restorer

* Webcam polishing part1 (#796)

* Cosmetics on ignore comments

* Testing for replace audio

* Testing for restore audio

* Testing for restore audio

* Fix replace_audio()

* Remove shortest and use fixed video duration

* Remove shortest and use fixed video duration

* Prevent duplicate entries to local PATH

* Do hard exit on invalid args

* Need for Python 3.10

* Fix state of face selector

* Fix OpenVINO by aliasing GPU.0 to GPU

* Fix OpenVINO by aliasing GPU.0 to GPU

* Fix/age modifier styleganex 512 (#798)

* fix

* styleganex template

* changes

* changes

* fix occlusion mask

* add age modifier scale

* change

* change

* hardcode

* Cleanup

* Use model_sizes and model_templates variables

* No need for prepare when just 2 lines of code

* Someone used spaces over tabs

* Revert back [0][0]

---------

Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com>

* Feat/update gradio5 (#799)

* Update to Gradio 5

* Remove overrides for Gradio

* Fix dark mode for Gradio

* Polish errors

* More styles for tabs and co

* Make slider inputs and reset like a unit

* Make slider inputs and reset like a unit

* Adjust naming

* Improved color matching (#800)

* aura fix

* fix import

* move to vision.py

* changes

* changes

* changes

* changes

* further reduction

* add test

* better test

* change name

* Minor cleanup

* Minor cleanup

* Minor cleanup

* changes (#801)

* Switch to official assets repo

* Add __pycache__ to gitignore

* Gradio pinned python-multipart to 0.0.12

* Update dependencies

* Feat/temp path second try (#802)

* Terminate base directory from temp helper

* Partial adjust program codebase

* Move arguments around

* Make `-j` absolete

* Resolve args

* Fix job register keys

* Adjust date test

* Finalize temp path

* Update onnxruntime

* Update dependencies

* Adjust color for checkboxes

* Revert due terrible performance

* Fix/enforce vp9 for webm (#805)

* Simple fix to enforce vp9 for webm

* Remove suggest methods from program helper

* Cleanup ffmpeg.py a bit

* Update onnxruntime (second try)

* Update onnxruntime (second try)

* Remove cudnn_conv_algo_search tweaks

* Remove cudnn_conv_algo_search tweaks

* changes

* add both mask instead of multiply

* adaptive color correction

* changes

* remove model size requirement

* changes

* add to facefusion.ini

* changes

* changes

* changes

* Add namespace for dfm creators

* Release five frame enhancer models

* Remove vendor from model name

* Remove vendor from model name

* changes

* changes

* changes

* changes

* Feat/download providers (#809)

* Introduce download providers

* update processors download method

* add ui

* Fix CI

* Adjust UI component order, Use download resolver for benchmark

* Remove is_download_done()

* Introduce download provider set, Remove choices method from execution, cast all dict keys() via list()

* Fix spacing

---------

Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com>

* Fix model paths for 3.1.0

* Introduce bulk-run (#810)

* Introduce bulk-run

* Make bulk run bullet proof

* Integration test for bulk-run

* new alignment

* Add safer global named resolve_file_pattern() (#811)

* Allow bulk runner with target pattern only

* changes

* changes

* Update Python to 3.12 for CI (#813)

* changes

* Improve NVIDIA device lookups

* Rename template key to deepfacelive

* Fix name

* Improve resolve download

* Rename bulk-run to batch-run

* Make deep swapper inputs universal

* Add more deepfacelive models

* Use different morph value

* Feat/simplify hashes sources download (#814)

* Extract download directory path from assets path

* Fix lint

* Fix force-download command, Fix urls in frame enhancer

* changes

* fix warp_face_by_bounding_box dtype error

* DFM Morph (#816)

* changes

* Improve wording, Replace [None], SideQuest: clean forward() of age modifier

* SideQuest: clean forward() of face enhancer

---------

Co-authored-by: henryruhs <info@henryruhs.com>

* Fix preview refresh after slide

* Add more deepfacelive models (#817)

* Add more deepfacelive models

* Add more deepfacelive models

* Fix deep swapper sizes

* Kill accent colors, Number input styles for Chrome

* Simplify thumbnail-item looks

* Fix first black screen

* Introduce model helper

* ci.yml: Add macOS on ARM64 to the testing (#818)

* ci.yml: Add macOS on ARM64 to the testing

* ci.yml: uses: AnimMouse/setup-ffmpeg@v1

* ci.yml: strategy: matrix: os: macos-latest,

* - name: Set up FFmpeg

* Update .github/workflows/ci.yml

* Update ci.yml

---------

Co-authored-by: Henry Ruhs <info@henryruhs.com>

* Show/hide morph slider for deep swapper (#822)

* remove dfl_head and update dfl_whole_face template

* Add deep swapper models by Mats

* Add deep swapper models by Druuzil

* Add deep swapper models by Rumateus

* Implement face enhancer weight for codeformer, Side Quest: has proces… (#823)

* Implement face enhancer weight for codeformer, Side Quest: has processor checks

* Fix typo

* Fix face enhancer blend in UI

* Use static model set creation

* Add deep swapper models by Jen

* Introduce create_static_model_set() everywhere (#824)

* Move clear over to the UI (#825)

* Fix model key

* Undo restore_audio()

* Switch to latest XSeg

* Switch to latest XSeg

* Switch to latest XSeg

* Use resolve_download_url() everywhere, Vanish --skip-download flag

* Fix resolve_download_url

* Fix space

* Kill resolve_execution_provider_keys() and move fallbacks where they belong

* Kill resolve_execution_provider_keys() and move fallbacks where they belong

* Remove as this does not work

* Change TempFrameFormat order

* Fix CoreML partially

* Remove duplicates (Rumateus is the creator)

* Add deep swapper models by Edel

* Introduce download scopes (#826)

* Introduce download scopes

* Limit download scopes to force-download command

* Change source-paths behaviour

* Fix space

* Update README

* Rename create_log_level_program to create_misc_program

* Fix wording

* Fix wording

* Update dependencies

* Use tolerant for video_memory_strategy in benchmark

* Feat/ffmpeg with progress (#827)

* FFmpeg with progress bar

* Fix typing

* FFmpeg with progress bar part2

* Restore streaming wording

* Change order in choices and typing

* Introduce File using list_directory() (#830)

* Feat/local deep swapper models (#832)

* Local model support for deep swapper

* Local model support for deep swapper part2

* Local model support for deep swapper part3

* Update yet another dfm by Druuzil

* Refactor/choices and naming (#833)

* Refactor choices, imports and naming

* Refactor choices, imports and naming

* Fix styles for tabs, Restore toast

* Update yet another dfm by Druuzil

* Feat/face masker models (#834)

* Introduce face masker models

* Introduce face masker models

* Introduce face masker models

* Register needed step keys

* Provide different XSeg models

* Simplify model context

* Fix out of range for trim frame, Fix ffmpeg extraction count (#836)

* Fix out of range for trim frame, Fix ffmpeg extraction count

* Move restrict of trim frame to the core, Make sure all values are within the range

* Fix and merge testing

* Fix typing

* Add region mask for deep swapper

* Adjust wording

* Move FACE_MASK_REGIONS to choices

* Update dependencies

* Feat/download provider fallback (#837)

* Introduce download providers fallback, Use CURL everywhre

* Fix CI

* Use readlines() over readline() to avoid while

* Use readlines() over readline() to avoid while

* Use readlines() over readline() to avoid while

* Use communicate() over wait()

* Minor updates for testing

* Stop webcam on source image change

* Feat/webcam improvements (#838)

* Detect available webcams

* Fix CI, Move webcam id dropdown to the sidebar, Disable warnings

* Fix CI

* Remove signal on hard_exit() to prevent exceptions

* Fix border color in toast timer

* Prepare release

* Update preview

* Update preview

* Hotfix progress bar

---------

Co-authored-by: DDXDB <38449595+DDXDB@users.noreply.github.com>
Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com>
Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2024-12-24 12:46:56 +01:00

272 lines
12 KiB
Python
Executable File

from argparse import ArgumentParser
from functools import lru_cache
from typing import List
import cv2
import numpy
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, voice_extractor, wording
from facefusion.audio import create_empty_audio_frame, get_voice_frame, read_static_voice
from facefusion.common_helper import get_first
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import create_bounding_box, paste_back, warp_face_by_bounding_box, warp_face_by_face_landmark_5
from facefusion.face_masker import create_mouth_mask, create_occlusion_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import filter_audio_paths, has_audio, in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import LipSyncerInputs
from facefusion.program_helper import find_argument_group
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.typing import ApplyStateItem, Args, AudioFrame, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import read_image, read_static_image, restrict_video_fps, write_image
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'wav2lip_96':
{
'hashes':
{
'lip_syncer':
{
'url': resolve_download_url('models-3.0.0', 'wav2lip_96.hash'),
'path': resolve_relative_path('../.assets/models/wav2lip_96.hash')
}
},
'sources':
{
'lip_syncer':
{
'url': resolve_download_url('models-3.0.0', 'wav2lip_96.onnx'),
'path': resolve_relative_path('../.assets/models/wav2lip_96.onnx')
}
},
'size': (96, 96)
},
'wav2lip_gan_96':
{
'hashes':
{
'lip_syncer':
{
'url': resolve_download_url('models-3.0.0', 'wav2lip_gan_96.hash'),
'path': resolve_relative_path('../.assets/models/wav2lip_gan_96.hash')
}
},
'sources':
{
'lip_syncer':
{
'url': resolve_download_url('models-3.0.0', 'wav2lip_gan_96.onnx'),
'path': resolve_relative_path('../.assets/models/wav2lip_gan_96.onnx')
}
},
'size': (96, 96)
}
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
lip_syncer_model = state_manager.get_item('lip_syncer_model')
return create_static_model_set('full').get(lip_syncer_model)
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--lip-syncer-model', help = wording.get('help.lip_syncer_model'), default = config.get_str_value('processors.lip_syncer_model', 'wav2lip_gan_96'), choices = processors_choices.lip_syncer_models)
facefusion.jobs.job_store.register_step_keys([ 'lip_syncer_model' ])
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
apply_state_item('lip_syncer_model', args.get('lip_syncer_model'))
def pre_check() -> bool:
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
def pre_process(mode : ProcessMode) -> bool:
if not has_audio(state_manager.get_item('source_paths')):
logger.error(wording.get('choose_audio_source') + wording.get('exclamation_mark'), __name__)
return False
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__)
return False
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__)
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__)
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
read_static_voice.cache_clear()
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
clear_inference_pool()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
face_classifier.clear_inference_pool()
face_detector.clear_inference_pool()
face_landmarker.clear_inference_pool()
face_masker.clear_inference_pool()
face_recognizer.clear_inference_pool()
voice_extractor.clear_inference_pool()
def sync_lip(target_face : Face, temp_audio_frame : AudioFrame, temp_vision_frame : VisionFrame) -> VisionFrame:
model_size = get_model_options().get('size')
temp_audio_frame = prepare_audio_frame(temp_audio_frame)
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), 'ffhq_512', (512, 512))
face_landmark_68 = cv2.transform(target_face.landmark_set.get('68').reshape(1, -1, 2), affine_matrix).reshape(-1, 2)
bounding_box = create_bounding_box(face_landmark_68)
bounding_box[1] -= numpy.abs(bounding_box[3] - bounding_box[1]) * 0.125
mouth_mask = create_mouth_mask(face_landmark_68)
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
crop_masks =\
[
mouth_mask,
box_mask
]
if 'occlusion' in state_manager.get_item('face_mask_types'):
occlusion_mask = create_occlusion_mask(crop_vision_frame)
crop_masks.append(occlusion_mask)
close_vision_frame, close_matrix = warp_face_by_bounding_box(crop_vision_frame, bounding_box, model_size)
close_vision_frame = prepare_crop_frame(close_vision_frame)
close_vision_frame = forward(temp_audio_frame, close_vision_frame)
close_vision_frame = normalize_close_frame(close_vision_frame)
crop_vision_frame = cv2.warpAffine(close_vision_frame, cv2.invertAffineTransform(close_matrix), (512, 512), borderMode = cv2.BORDER_REPLICATE)
crop_mask = numpy.minimum.reduce(crop_masks)
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
return paste_vision_frame
def forward(temp_audio_frame : AudioFrame, close_vision_frame : VisionFrame) -> VisionFrame:
lip_syncer = get_inference_pool().get('lip_syncer')
with conditional_thread_semaphore():
close_vision_frame = lip_syncer.run(None,
{
'source': temp_audio_frame,
'target': close_vision_frame
})[0]
return close_vision_frame
def prepare_audio_frame(temp_audio_frame : AudioFrame) -> AudioFrame:
temp_audio_frame = numpy.maximum(numpy.exp(-5 * numpy.log(10)), temp_audio_frame)
temp_audio_frame = numpy.log10(temp_audio_frame) * 1.6 + 3.2
temp_audio_frame = temp_audio_frame.clip(-4, 4).astype(numpy.float32)
temp_audio_frame = numpy.expand_dims(temp_audio_frame, axis = (0, 1))
return temp_audio_frame
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
prepare_vision_frame = crop_vision_frame.copy()
prepare_vision_frame[:, 48:] = 0
crop_vision_frame = numpy.concatenate((prepare_vision_frame, crop_vision_frame), axis = 3)
crop_vision_frame = crop_vision_frame.transpose(0, 3, 1, 2).astype('float32') / 255.0
return crop_vision_frame
def normalize_close_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = crop_vision_frame[0].transpose(1, 2, 0)
crop_vision_frame = crop_vision_frame.clip(0, 1) * 255
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)
return crop_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass
def process_frame(inputs : LipSyncerInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
source_audio_frame = inputs.get('source_audio_frame')
target_vision_frame = inputs.get('target_vision_frame')
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
if state_manager.get_item('face_selector_mode') == 'many':
if many_faces:
for target_face in many_faces:
target_vision_frame = sync_lip(target_face, source_audio_frame, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'one':
target_face = get_one_face(many_faces)
if target_face:
target_vision_frame = sync_lip(target_face, source_audio_frame, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'reference':
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = sync_lip(similar_face, source_audio_frame, target_vision_frame)
return target_vision_frame
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
source_audio_path = get_first(filter_audio_paths(source_paths))
temp_video_fps = restrict_video_fps(state_manager.get_item('target_path'), state_manager.get_item('output_video_fps'))
for queue_payload in process_manager.manage(queue_payloads):
frame_number = queue_payload.get('frame_number')
target_vision_path = queue_payload.get('frame_path')
source_audio_frame = get_voice_frame(source_audio_path, temp_video_fps, frame_number)
if not numpy.any(source_audio_frame):
source_audio_frame = create_empty_audio_frame()
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_audio_frame': source_audio_frame,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
source_audio_frame = create_empty_audio_frame()
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_audio_frame': source_audio_frame,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
source_audio_paths = filter_audio_paths(state_manager.get_item('source_paths'))
temp_video_fps = restrict_video_fps(state_manager.get_item('target_path'), state_manager.get_item('output_video_fps'))
for source_audio_path in source_audio_paths:
read_static_voice(source_audio_path, temp_video_fps)
processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)