
* Replace audio whenever set via source * add H264_qsv&HEVC_qsv (#768) * Update ffmpeg.py * Update choices.py * Update typing.py * Fix spaces and newlines * Fix return type * Introduce hififace swapper * Disable stream for expression restorer * Webcam polishing part1 (#796) * Cosmetics on ignore comments * Testing for replace audio * Testing for restore audio * Testing for restore audio * Fix replace_audio() * Remove shortest and use fixed video duration * Remove shortest and use fixed video duration * Prevent duplicate entries to local PATH * Do hard exit on invalid args * Need for Python 3.10 * Fix state of face selector * Fix OpenVINO by aliasing GPU.0 to GPU * Fix OpenVINO by aliasing GPU.0 to GPU * Fix/age modifier styleganex 512 (#798) * fix * styleganex template * changes * changes * fix occlusion mask * add age modifier scale * change * change * hardcode * Cleanup * Use model_sizes and model_templates variables * No need for prepare when just 2 lines of code * Someone used spaces over tabs * Revert back [0][0] --------- Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> * Feat/update gradio5 (#799) * Update to Gradio 5 * Remove overrides for Gradio * Fix dark mode for Gradio * Polish errors * More styles for tabs and co * Make slider inputs and reset like a unit * Make slider inputs and reset like a unit * Adjust naming * Improved color matching (#800) * aura fix * fix import * move to vision.py * changes * changes * changes * changes * further reduction * add test * better test * change name * Minor cleanup * Minor cleanup * Minor cleanup * changes (#801) * Switch to official assets repo * Add __pycache__ to gitignore * Gradio pinned python-multipart to 0.0.12 * Update dependencies * Feat/temp path second try (#802) * Terminate base directory from temp helper * Partial adjust program codebase * Move arguments around * Make `-j` absolete * Resolve args * Fix job register keys * Adjust date test * Finalize temp path * Update onnxruntime * Update dependencies * Adjust color for checkboxes * Revert due terrible performance * Fix/enforce vp9 for webm (#805) * Simple fix to enforce vp9 for webm * Remove suggest methods from program helper * Cleanup ffmpeg.py a bit * Update onnxruntime (second try) * Update onnxruntime (second try) * Remove cudnn_conv_algo_search tweaks * Remove cudnn_conv_algo_search tweaks * changes * add both mask instead of multiply * adaptive color correction * changes * remove model size requirement * changes * add to facefusion.ini * changes * changes * changes * Add namespace for dfm creators * Release five frame enhancer models * Remove vendor from model name * Remove vendor from model name * changes * changes * changes * changes * Feat/download providers (#809) * Introduce download providers * update processors download method * add ui * Fix CI * Adjust UI component order, Use download resolver for benchmark * Remove is_download_done() * Introduce download provider set, Remove choices method from execution, cast all dict keys() via list() * Fix spacing --------- Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> * Fix model paths for 3.1.0 * Introduce bulk-run (#810) * Introduce bulk-run * Make bulk run bullet proof * Integration test for bulk-run * new alignment * Add safer global named resolve_file_pattern() (#811) * Allow bulk runner with target pattern only * changes * changes * Update Python to 3.12 for CI (#813) * changes * Improve NVIDIA device lookups * Rename template key to deepfacelive * Fix name * Improve resolve download * Rename bulk-run to batch-run * Make deep swapper inputs universal * Add more deepfacelive models * Use different morph value * Feat/simplify hashes sources download (#814) * Extract download directory path from assets path * Fix lint * Fix force-download command, Fix urls in frame enhancer * changes * fix warp_face_by_bounding_box dtype error * DFM Morph (#816) * changes * Improve wording, Replace [None], SideQuest: clean forward() of age modifier * SideQuest: clean forward() of face enhancer --------- Co-authored-by: henryruhs <info@henryruhs.com> * Fix preview refresh after slide * Add more deepfacelive models (#817) * Add more deepfacelive models * Add more deepfacelive models * Fix deep swapper sizes * Kill accent colors, Number input styles for Chrome * Simplify thumbnail-item looks * Fix first black screen * Introduce model helper * ci.yml: Add macOS on ARM64 to the testing (#818) * ci.yml: Add macOS on ARM64 to the testing * ci.yml: uses: AnimMouse/setup-ffmpeg@v1 * ci.yml: strategy: matrix: os: macos-latest, * - name: Set up FFmpeg * Update .github/workflows/ci.yml * Update ci.yml --------- Co-authored-by: Henry Ruhs <info@henryruhs.com> * Show/hide morph slider for deep swapper (#822) * remove dfl_head and update dfl_whole_face template * Add deep swapper models by Mats * Add deep swapper models by Druuzil * Add deep swapper models by Rumateus * Implement face enhancer weight for codeformer, Side Quest: has proces… (#823) * Implement face enhancer weight for codeformer, Side Quest: has processor checks * Fix typo * Fix face enhancer blend in UI * Use static model set creation * Add deep swapper models by Jen * Introduce create_static_model_set() everywhere (#824) * Move clear over to the UI (#825) * Fix model key * Undo restore_audio() * Switch to latest XSeg * Switch to latest XSeg * Switch to latest XSeg * Use resolve_download_url() everywhere, Vanish --skip-download flag * Fix resolve_download_url * Fix space * Kill resolve_execution_provider_keys() and move fallbacks where they belong * Kill resolve_execution_provider_keys() and move fallbacks where they belong * Remove as this does not work * Change TempFrameFormat order * Fix CoreML partially * Remove duplicates (Rumateus is the creator) * Add deep swapper models by Edel * Introduce download scopes (#826) * Introduce download scopes * Limit download scopes to force-download command * Change source-paths behaviour * Fix space * Update README * Rename create_log_level_program to create_misc_program * Fix wording * Fix wording * Update dependencies * Use tolerant for video_memory_strategy in benchmark * Feat/ffmpeg with progress (#827) * FFmpeg with progress bar * Fix typing * FFmpeg with progress bar part2 * Restore streaming wording * Change order in choices and typing * Introduce File using list_directory() (#830) * Feat/local deep swapper models (#832) * Local model support for deep swapper * Local model support for deep swapper part2 * Local model support for deep swapper part3 * Update yet another dfm by Druuzil * Refactor/choices and naming (#833) * Refactor choices, imports and naming * Refactor choices, imports and naming * Fix styles for tabs, Restore toast * Update yet another dfm by Druuzil * Feat/face masker models (#834) * Introduce face masker models * Introduce face masker models * Introduce face masker models * Register needed step keys * Provide different XSeg models * Simplify model context * Fix out of range for trim frame, Fix ffmpeg extraction count (#836) * Fix out of range for trim frame, Fix ffmpeg extraction count * Move restrict of trim frame to the core, Make sure all values are within the range * Fix and merge testing * Fix typing * Add region mask for deep swapper * Adjust wording * Move FACE_MASK_REGIONS to choices * Update dependencies * Feat/download provider fallback (#837) * Introduce download providers fallback, Use CURL everywhre * Fix CI * Use readlines() over readline() to avoid while * Use readlines() over readline() to avoid while * Use readlines() over readline() to avoid while * Use communicate() over wait() * Minor updates for testing * Stop webcam on source image change * Feat/webcam improvements (#838) * Detect available webcams * Fix CI, Move webcam id dropdown to the sidebar, Disable warnings * Fix CI * Remove signal on hard_exit() to prevent exceptions * Fix border color in toast timer * Prepare release * Update preview * Update preview * Hotfix progress bar --------- Co-authored-by: DDXDB <38449595+DDXDB@users.noreply.github.com> Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
272 lines
12 KiB
Python
Executable File
272 lines
12 KiB
Python
Executable File
from argparse import ArgumentParser
|
|
from functools import lru_cache
|
|
from typing import List
|
|
|
|
import cv2
|
|
import numpy
|
|
|
|
import facefusion.jobs.job_manager
|
|
import facefusion.jobs.job_store
|
|
import facefusion.processors.core as processors
|
|
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, voice_extractor, wording
|
|
from facefusion.audio import create_empty_audio_frame, get_voice_frame, read_static_voice
|
|
from facefusion.common_helper import get_first
|
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
|
from facefusion.face_analyser import get_many_faces, get_one_face
|
|
from facefusion.face_helper import create_bounding_box, paste_back, warp_face_by_bounding_box, warp_face_by_face_landmark_5
|
|
from facefusion.face_masker import create_mouth_mask, create_occlusion_mask, create_static_box_mask
|
|
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
|
|
from facefusion.face_store import get_reference_faces
|
|
from facefusion.filesystem import filter_audio_paths, has_audio, in_directory, is_image, is_video, resolve_relative_path, same_file_extension
|
|
from facefusion.processors import choices as processors_choices
|
|
from facefusion.processors.typing import LipSyncerInputs
|
|
from facefusion.program_helper import find_argument_group
|
|
from facefusion.thread_helper import conditional_thread_semaphore
|
|
from facefusion.typing import ApplyStateItem, Args, AudioFrame, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
|
from facefusion.vision import read_image, read_static_image, restrict_video_fps, write_image
|
|
|
|
|
|
@lru_cache(maxsize = None)
|
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
|
return\
|
|
{
|
|
'wav2lip_96':
|
|
{
|
|
'hashes':
|
|
{
|
|
'lip_syncer':
|
|
{
|
|
'url': resolve_download_url('models-3.0.0', 'wav2lip_96.hash'),
|
|
'path': resolve_relative_path('../.assets/models/wav2lip_96.hash')
|
|
}
|
|
},
|
|
'sources':
|
|
{
|
|
'lip_syncer':
|
|
{
|
|
'url': resolve_download_url('models-3.0.0', 'wav2lip_96.onnx'),
|
|
'path': resolve_relative_path('../.assets/models/wav2lip_96.onnx')
|
|
}
|
|
},
|
|
'size': (96, 96)
|
|
},
|
|
'wav2lip_gan_96':
|
|
{
|
|
'hashes':
|
|
{
|
|
'lip_syncer':
|
|
{
|
|
'url': resolve_download_url('models-3.0.0', 'wav2lip_gan_96.hash'),
|
|
'path': resolve_relative_path('../.assets/models/wav2lip_gan_96.hash')
|
|
}
|
|
},
|
|
'sources':
|
|
{
|
|
'lip_syncer':
|
|
{
|
|
'url': resolve_download_url('models-3.0.0', 'wav2lip_gan_96.onnx'),
|
|
'path': resolve_relative_path('../.assets/models/wav2lip_gan_96.onnx')
|
|
}
|
|
},
|
|
'size': (96, 96)
|
|
}
|
|
}
|
|
|
|
|
|
def get_inference_pool() -> InferencePool:
|
|
model_sources = get_model_options().get('sources')
|
|
return inference_manager.get_inference_pool(__name__, model_sources)
|
|
|
|
|
|
def clear_inference_pool() -> None:
|
|
inference_manager.clear_inference_pool(__name__)
|
|
|
|
|
|
def get_model_options() -> ModelOptions:
|
|
lip_syncer_model = state_manager.get_item('lip_syncer_model')
|
|
return create_static_model_set('full').get(lip_syncer_model)
|
|
|
|
|
|
def register_args(program : ArgumentParser) -> None:
|
|
group_processors = find_argument_group(program, 'processors')
|
|
if group_processors:
|
|
group_processors.add_argument('--lip-syncer-model', help = wording.get('help.lip_syncer_model'), default = config.get_str_value('processors.lip_syncer_model', 'wav2lip_gan_96'), choices = processors_choices.lip_syncer_models)
|
|
facefusion.jobs.job_store.register_step_keys([ 'lip_syncer_model' ])
|
|
|
|
|
|
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
|
apply_state_item('lip_syncer_model', args.get('lip_syncer_model'))
|
|
|
|
|
|
def pre_check() -> bool:
|
|
model_hashes = get_model_options().get('hashes')
|
|
model_sources = get_model_options().get('sources')
|
|
|
|
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool:
|
|
if not has_audio(state_manager.get_item('source_paths')):
|
|
logger.error(wording.get('choose_audio_source') + wording.get('exclamation_mark'), __name__)
|
|
return False
|
|
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
|
|
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__)
|
|
return False
|
|
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
|
|
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__)
|
|
return False
|
|
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
|
|
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__)
|
|
return False
|
|
return True
|
|
|
|
|
|
def post_process() -> None:
|
|
read_static_image.cache_clear()
|
|
read_static_voice.cache_clear()
|
|
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
|
|
clear_inference_pool()
|
|
if state_manager.get_item('video_memory_strategy') == 'strict':
|
|
content_analyser.clear_inference_pool()
|
|
face_classifier.clear_inference_pool()
|
|
face_detector.clear_inference_pool()
|
|
face_landmarker.clear_inference_pool()
|
|
face_masker.clear_inference_pool()
|
|
face_recognizer.clear_inference_pool()
|
|
voice_extractor.clear_inference_pool()
|
|
|
|
|
|
def sync_lip(target_face : Face, temp_audio_frame : AudioFrame, temp_vision_frame : VisionFrame) -> VisionFrame:
|
|
model_size = get_model_options().get('size')
|
|
temp_audio_frame = prepare_audio_frame(temp_audio_frame)
|
|
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), 'ffhq_512', (512, 512))
|
|
face_landmark_68 = cv2.transform(target_face.landmark_set.get('68').reshape(1, -1, 2), affine_matrix).reshape(-1, 2)
|
|
bounding_box = create_bounding_box(face_landmark_68)
|
|
bounding_box[1] -= numpy.abs(bounding_box[3] - bounding_box[1]) * 0.125
|
|
mouth_mask = create_mouth_mask(face_landmark_68)
|
|
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
|
|
crop_masks =\
|
|
[
|
|
mouth_mask,
|
|
box_mask
|
|
]
|
|
|
|
if 'occlusion' in state_manager.get_item('face_mask_types'):
|
|
occlusion_mask = create_occlusion_mask(crop_vision_frame)
|
|
crop_masks.append(occlusion_mask)
|
|
|
|
close_vision_frame, close_matrix = warp_face_by_bounding_box(crop_vision_frame, bounding_box, model_size)
|
|
close_vision_frame = prepare_crop_frame(close_vision_frame)
|
|
close_vision_frame = forward(temp_audio_frame, close_vision_frame)
|
|
close_vision_frame = normalize_close_frame(close_vision_frame)
|
|
crop_vision_frame = cv2.warpAffine(close_vision_frame, cv2.invertAffineTransform(close_matrix), (512, 512), borderMode = cv2.BORDER_REPLICATE)
|
|
crop_mask = numpy.minimum.reduce(crop_masks)
|
|
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
|
|
return paste_vision_frame
|
|
|
|
|
|
def forward(temp_audio_frame : AudioFrame, close_vision_frame : VisionFrame) -> VisionFrame:
|
|
lip_syncer = get_inference_pool().get('lip_syncer')
|
|
|
|
with conditional_thread_semaphore():
|
|
close_vision_frame = lip_syncer.run(None,
|
|
{
|
|
'source': temp_audio_frame,
|
|
'target': close_vision_frame
|
|
})[0]
|
|
|
|
return close_vision_frame
|
|
|
|
|
|
def prepare_audio_frame(temp_audio_frame : AudioFrame) -> AudioFrame:
|
|
temp_audio_frame = numpy.maximum(numpy.exp(-5 * numpy.log(10)), temp_audio_frame)
|
|
temp_audio_frame = numpy.log10(temp_audio_frame) * 1.6 + 3.2
|
|
temp_audio_frame = temp_audio_frame.clip(-4, 4).astype(numpy.float32)
|
|
temp_audio_frame = numpy.expand_dims(temp_audio_frame, axis = (0, 1))
|
|
return temp_audio_frame
|
|
|
|
|
|
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
|
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0)
|
|
prepare_vision_frame = crop_vision_frame.copy()
|
|
prepare_vision_frame[:, 48:] = 0
|
|
crop_vision_frame = numpy.concatenate((prepare_vision_frame, crop_vision_frame), axis = 3)
|
|
crop_vision_frame = crop_vision_frame.transpose(0, 3, 1, 2).astype('float32') / 255.0
|
|
return crop_vision_frame
|
|
|
|
|
|
def normalize_close_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
|
crop_vision_frame = crop_vision_frame[0].transpose(1, 2, 0)
|
|
crop_vision_frame = crop_vision_frame.clip(0, 1) * 255
|
|
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)
|
|
return crop_vision_frame
|
|
|
|
|
|
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
|
|
pass
|
|
|
|
|
|
def process_frame(inputs : LipSyncerInputs) -> VisionFrame:
|
|
reference_faces = inputs.get('reference_faces')
|
|
source_audio_frame = inputs.get('source_audio_frame')
|
|
target_vision_frame = inputs.get('target_vision_frame')
|
|
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
|
|
|
|
if state_manager.get_item('face_selector_mode') == 'many':
|
|
if many_faces:
|
|
for target_face in many_faces:
|
|
target_vision_frame = sync_lip(target_face, source_audio_frame, target_vision_frame)
|
|
if state_manager.get_item('face_selector_mode') == 'one':
|
|
target_face = get_one_face(many_faces)
|
|
if target_face:
|
|
target_vision_frame = sync_lip(target_face, source_audio_frame, target_vision_frame)
|
|
if state_manager.get_item('face_selector_mode') == 'reference':
|
|
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
|
|
if similar_faces:
|
|
for similar_face in similar_faces:
|
|
target_vision_frame = sync_lip(similar_face, source_audio_frame, target_vision_frame)
|
|
return target_vision_frame
|
|
|
|
|
|
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
|
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
|
source_audio_path = get_first(filter_audio_paths(source_paths))
|
|
temp_video_fps = restrict_video_fps(state_manager.get_item('target_path'), state_manager.get_item('output_video_fps'))
|
|
|
|
for queue_payload in process_manager.manage(queue_payloads):
|
|
frame_number = queue_payload.get('frame_number')
|
|
target_vision_path = queue_payload.get('frame_path')
|
|
source_audio_frame = get_voice_frame(source_audio_path, temp_video_fps, frame_number)
|
|
if not numpy.any(source_audio_frame):
|
|
source_audio_frame = create_empty_audio_frame()
|
|
target_vision_frame = read_image(target_vision_path)
|
|
output_vision_frame = process_frame(
|
|
{
|
|
'reference_faces': reference_faces,
|
|
'source_audio_frame': source_audio_frame,
|
|
'target_vision_frame': target_vision_frame
|
|
})
|
|
write_image(target_vision_path, output_vision_frame)
|
|
update_progress(1)
|
|
|
|
|
|
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
|
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
|
source_audio_frame = create_empty_audio_frame()
|
|
target_vision_frame = read_static_image(target_path)
|
|
output_vision_frame = process_frame(
|
|
{
|
|
'reference_faces': reference_faces,
|
|
'source_audio_frame': source_audio_frame,
|
|
'target_vision_frame': target_vision_frame
|
|
})
|
|
write_image(output_path, output_vision_frame)
|
|
|
|
|
|
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
|
|
source_audio_paths = filter_audio_paths(state_manager.get_item('source_paths'))
|
|
temp_video_fps = restrict_video_fps(state_manager.get_item('target_path'), state_manager.get_item('output_video_fps'))
|
|
for source_audio_path in source_audio_paths:
|
|
read_static_voice(source_audio_path, temp_video_fps)
|
|
processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
|