facefusion/facefusion/face_masker.py
Henry Ruhs c77493ff9a
Next (#384)
* feat/yoloface (#334)

* added yolov8 to face_detector (#323)

* added yolov8 to face_detector

* added yolov8 to face_detector

* Initial cleanup and renaming

* Update README

* refactored detect_with_yoloface (#329)

* refactored detect_with_yoloface

* apply review

* Change order again

* Restore working code

* modified code (#330)

* refactored detect_with_yoloface

* apply review

* use temp_frame in detect_with_yoloface

* reorder

* modified

* reorder models

* Tiny cleanup

---------

Co-authored-by: tamoharu <133945583+tamoharu@users.noreply.github.com>

* include audio file functions (#336)

* Add testing for audio handlers

* Change order

* Fix naming

* Use correct typing in choices

* Update help message for arguments, Notation based wording approach (#347)

* Update help message for arguments, Notation based wording approach

* Fix installer

* Audio functions (#345)

* Update ffmpeg.py

* Create audio.py

* Update ffmpeg.py

* Update audio.py

* Update audio.py

* Update typing.py

* Update ffmpeg.py

* Update audio.py

* Rename Frame to VisionFrame (#346)

* Minor tidy up

* Introduce audio testing

* Add more todo for testing

* Add more todo for testing

* Fix indent

* Enable venv on the fly

* Enable venv on the fly

* Revert venv on the fly

* Revert venv on the fly

* Force Gradio to shut up

* Force Gradio to shut up

* Clear temp before processing

* Reduce terminal output

* include audio file functions

* Enforce output resolution on merge video

* Minor cleanups

* Add age and gender to face debugger items (#353)

* Add age and gender to face debugger items

* Rename like suggested in the code review

* Fix the output framerate vs. time

* Lip Sync (#356)

* Cli implementation of wav2lip

* - create get_first_item()
- remove non gan wav2lip model
- implement video memory strategy
- implement get_reference_frame()
- implement process_image()
- rearrange crop_mask_list
- implement test_cli

* Simplify testing

* Rename to lip syncer

* Fix testing

* Fix testing

* Minor cleanup

* Cuda 12 installer (#362)

* Make cuda nightly (12) the default

* Better keep legacy cuda just in case

* Use CUDA and ROCM versions

* Remove MacOS options from installer (CoreML include in default package)

* Add lip-syncer support to source component

* Add lip-syncer support to source component

* Fix the check in the source component

* Add target image check

* Introduce more helpers to suite the lip-syncer needs

* Downgrade onnxruntime as of buggy 1.17.0 release

* Revert "Downgrade onnxruntime as of buggy 1.17.0 release"

This reverts commit f4a7ae6824.

* More testing and add todos

* Fix the frame processor API to at least not throw errors

* Introduce dict based frame processor inputs (#364)

* Introduce dict based frame processor inputs

* Forgot to adjust webcam

* create path payloads (#365)

* create index payload to paths for process_frames

* rename to payload_paths

* This code now is poetry

* Fix the terminal output

* Make lip-syncer work in the preview

* Remove face debugger test for now

* Reoder reference_faces, Fix testing

* Use inswapper_128 on buggy onnxruntime 1.17.0

* Undo inswapper_128_fp16 duo broken onnxruntime 1.17.0

* Undo inswapper_128_fp16 duo broken onnxruntime 1.17.0

* Fix lip_syncer occluder & region mask issue

* Fix preview once in case there was no output video fps

* fix lip_syncer custom fps

* remove unused import

* Add 68 landmark functions (#367)

* Add 68 landmark model

* Add landmark to face object

* Re-arrange and modify typing

* Rename function

* Rearrange

* Rearrange

* ignore type

* ignore type

* change type

* ignore

* name

* Some cleanup

* Some cleanup

* Opps, I broke something

* Feat/face analyser refactoring (#369)

* Restructure face analyser and start TDD

* YoloFace and Yunet testing are passing

* Remove offset from yoloface detection

* Cleanup code

* Tiny fix

* Fix get_many_faces()

* Tiny fix (again)

* Use 320x320 fallback for retinaface

* Fix merging mashup

* Upload wave2lip model

* Upload 2dfan2 model and rename internal to face_predictor

* Downgrade onnxruntime for most cases

* Update for the face debugger to render landmark 68

* Try to make detect_face_landmark_68() and detect_gender_age() more uniform

* Enable retinaface testing for 320x320

* Make detect_face_landmark_68() and detect_gender_age() as uniform as … (#370)

* Make detect_face_landmark_68() and detect_gender_age() as uniform as possible

* Revert landmark scale and translation

* Make box-mask for lip-syncer adjustable

* Add create_bbox_from_landmark()

* Remove currently unused code

* Feat/uniface (#375)

* add uniface (#373)

* Finalize UniFace implementation

---------

Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com>

* My approach how todo it

* edit

* edit

* replace vertical blur with gaussian

* remove region mask

* Rebase against next and restore method

* Minor improvements

* Minor improvements

* rename & add forehead padding

* Adjust and host uniface model

* Use 2dfan4 model

* Rename to face landmarker

* Feat/replace bbox with bounding box (#380)

* Add landmark 68 to 5 convertion

* Add landmark 68 to 5 convertion

* Keep 5, 5/68 and 68 landmarks

* Replace kps with landmark

* Replace bbox with bounding box

* Reshape face_landmark5_list different

* Make yoloface the default

* Move convert_face_landmark_68_to_5 to face_helper

* Minor spacing issue

* Dynamic detector sizes according to model (#382)

* Dynamic detector sizes according to model

* Dynamic detector sizes according to model

* Undo false commited files

* Add lib syncer model to the UI

* fix halo (#383)

* Bump to 2.3.0

* Update README and wording

* Update README and wording

* Fix spacing

* Apply _vision suffix

* Apply _vision suffix

* Apply _vision suffix

* Apply _vision suffix

* Apply _vision suffix

* Apply _vision suffix

* Apply _vision suffix, Move mouth mask to face_masker.py

* Apply _vision suffix

* Apply _vision suffix

* increase forehead padding

---------

Co-authored-by: tamoharu <133945583+tamoharu@users.noreply.github.com>
Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com>
2024-02-14 14:08:29 +01:00

141 lines
5.0 KiB
Python
Executable File

from typing import Any, Dict, List
from cv2.typing import Size
from functools import lru_cache
import threading
import cv2
import numpy
import onnxruntime
import facefusion.globals
from facefusion.typing import FaceLandmark68, VisionFrame, Mask, Padding, FaceMaskRegion, ModelSet
from facefusion.execution_helper import apply_execution_provider_options
from facefusion.filesystem import resolve_relative_path
from facefusion.download import conditional_download
FACE_OCCLUDER = None
FACE_PARSER = None
THREAD_LOCK : threading.Lock = threading.Lock()
MODELS : ModelSet =\
{
'face_occluder':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_occluder.onnx',
'path': resolve_relative_path('../.assets/models/face_occluder.onnx')
},
'face_parser':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_parser.onnx',
'path': resolve_relative_path('../.assets/models/face_parser.onnx')
}
}
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
{
'skin': 1,
'left-eyebrow': 2,
'right-eyebrow': 3,
'left-eye': 4,
'right-eye': 5,
'eye-glasses': 6,
'nose': 10,
'mouth': 11,
'upper-lip': 12,
'lower-lip': 13
}
def get_face_occluder() -> Any:
global FACE_OCCLUDER
with THREAD_LOCK:
if FACE_OCCLUDER is None:
model_path = MODELS.get('face_occluder').get('path')
FACE_OCCLUDER = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers))
return FACE_OCCLUDER
def get_face_parser() -> Any:
global FACE_PARSER
with THREAD_LOCK:
if FACE_PARSER is None:
model_path = MODELS.get('face_parser').get('path')
FACE_PARSER = onnxruntime.InferenceSession(model_path, providers = apply_execution_provider_options(facefusion.globals.execution_providers))
return FACE_PARSER
def clear_face_occluder() -> None:
global FACE_OCCLUDER
FACE_OCCLUDER = None
def clear_face_parser() -> None:
global FACE_PARSER
FACE_PARSER = None
def pre_check() -> bool:
if not facefusion.globals.skip_download:
download_directory_path = resolve_relative_path('../.assets/models')
model_urls =\
[
MODELS.get('face_occluder').get('url'),
MODELS.get('face_parser').get('url'),
]
conditional_download(download_directory_path, model_urls)
return True
@lru_cache(maxsize = None)
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
blur_area = max(blur_amount // 2, 1)
box_mask : Mask = numpy.ones(crop_size, numpy.float32)
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
if blur_amount > 0:
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
return box_mask
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
face_occluder = get_face_occluder()
prepare_vision_frame = cv2.resize(crop_vision_frame, face_occluder.get_inputs()[0].shape[1:3][::-1])
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
occlusion_mask : Mask = face_occluder.run(None,
{
face_occluder.get_inputs()[0].name: prepare_vision_frame
})[0][0]
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return occlusion_mask
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
face_parser = get_face_parser()
prepare_vision_frame = cv2.flip(cv2.resize(crop_vision_frame, (512, 512)), 1)
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32)[:, :, ::-1] / 127.5 - 1
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
region_mask : Mask = face_parser.run(None,
{
face_parser.get_inputs()[0].name: prepare_vision_frame
})[0][0]
region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return region_mask
def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask:
convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32))
mouth_mask : Mask = numpy.zeros((512, 512), dtype = numpy.float32)
mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0)
mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3)))
mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15)
return mouth_mask