#include "common.h" #include #include "CPass.h" #include "WallpaperEngine/Render/CFBO.h" #include "WallpaperEngine/Render/Shaders/Variables/CShaderVariable.h" #include "WallpaperEngine/Render/Shaders/Variables/CShaderVariableFloat.h" #include "WallpaperEngine/Render/Shaders/Variables/CShaderVariableInteger.h" #include "WallpaperEngine/Render/Shaders/Variables/CShaderVariableVector2.h" #include "WallpaperEngine/Render/Shaders/Variables/CShaderVariableVector3.h" #include "WallpaperEngine/Render/Shaders/Variables/CShaderVariableVector4.h" #include "WallpaperEngine/Core/Objects/Effects/Constants/CShaderConstant.h" #include "WallpaperEngine/Core/Objects/Effects/Constants/CShaderConstantFloat.h" #include "WallpaperEngine/Core/Objects/Effects/Constants/CShaderConstantInteger.h" #include "WallpaperEngine/Core/Objects/Effects/Constants/CShaderConstantVector4.h" using namespace WallpaperEngine::Core::Objects::Effects::Constants; using namespace WallpaperEngine::Render::Shaders::Variables; using namespace WallpaperEngine::Render::Objects::Effects; extern float g_Time; CPass::CPass (CMaterial* material, Core::Objects::Images::Materials::CPass* pass) : m_material (material), m_pass (pass) { this->setupTextures (); this->setupShaders (); this->setupShaderVariables (); } const ITexture* CPass::resolveTexture (const ITexture* expected, int index, const ITexture* previous) { if (expected == nullptr) { auto it = this->m_fbos.find (index); if (it != this->m_fbos.end ()) expected = (*it).second; } // first check in the binds and replace it if necessary auto it = this->m_material->getMaterial ()->getTextureBinds ().find (index); if (it == this->m_material->getMaterial ()->getTextureBinds ().end ()) return expected; // a bind named "previous" is just another way of telling it to use whatever texture there was already if ((*it).second->getName () == "previous") if (previous == nullptr) return expected; else return previous; // the bind actually has a name, search the FBO in the effect and return it auto fbo = this->m_material->m_effect->findFBO ((*it).second->getName ()); // try scene FBOs, these are our last resort, i guess the exception is better than a nullpo if (fbo == nullptr) return this->m_material->getImage ()->getScene ()->findFBO ((*it).second->getName ()); return fbo; } void CPass::render () { // set the framebuffer we're drawing to glBindFramebuffer (GL_FRAMEBUFFER, this->m_drawTo->getFramebuffer ()); // set proper viewport based on what we're drawing to glViewport (0, 0, this->m_drawTo->getRealWidth (), this->m_drawTo->getRealHeight ()); // set texture blending if (this->m_pass->getBlendingMode () == "translucent") { glEnable (GL_BLEND); glBlendFuncSeparate (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else if (this->m_pass->getBlendingMode () == "additive") { glEnable (GL_BLEND); glBlendFuncSeparate (GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); } else if (this->m_pass->getBlendingMode () == "normal") { glEnable (GL_BLEND); glBlendFuncSeparate (GL_ONE, GL_ZERO, GL_ONE, GL_ZERO); } else { glDisable (GL_BLEND); } // set depth testing if (this->m_pass->getDepthTest () == "disabled") { glDisable (GL_DEPTH_TEST); } else { glEnable (GL_DEPTH_TEST); } if (this->m_pass->getCullingMode () == "nocull") { glDisable (GL_CULL_FACE); } else { glEnable (GL_CULL_FACE); } if (this->m_pass->getDepthWrite () == "disabled") { glDepthMask (false); } else { glDepthMask (true); } // use the shader we have registered glUseProgram (this->m_programID); // maybe we can do this when setting the texture? const ITexture* texture = this->resolveTexture (this->m_input, 0, this->m_input); uint32_t currentTexture = 0; glm::vec2 translation = {0.0f, 0.0f}; glm::vec4 rotation = {0.0f, 0.0f, 0.0f, 0.0f}; if (texture->isAnimated () == true) { // calculate current texture and frame double currentRenderTime = fmod (static_cast (g_Time), this->m_material->getImage ()->getAnimationTime ()); for (const auto& frameCur : texture->getFrames ()) { currentRenderTime -= frameCur->frametime; if (currentRenderTime <= 0.0f) { // frame found, store coordinates and done currentTexture = frameCur->frameNumber; translation.x = frameCur->x / texture->getTextureWidth (currentTexture); translation.y = frameCur->y / texture->getTextureHeight (currentTexture); rotation.x = frameCur->width1 / static_cast (texture->getTextureWidth (currentTexture)); rotation.y = frameCur->width2 / static_cast (texture->getTextureWidth(currentTexture)); rotation.z = frameCur->height2 / static_cast (texture->getTextureHeight (currentTexture)); rotation.w = frameCur->height1 / static_cast (texture->getTextureHeight (currentTexture)); break; } } } // first texture is a bit special as we have to take what comes from the chain first glActiveTexture (GL_TEXTURE0); glBindTexture (GL_TEXTURE_2D, texture->getTextureID (currentTexture)); // continue on the map from the second texture if (this->m_finalTextures.empty () == false) { for (const auto& cur : this->m_finalTextures) { texture = this->resolveTexture (cur.second, cur.first, this->m_input); glActiveTexture (GL_TEXTURE0 + cur.first); glBindTexture (GL_TEXTURE_2D, texture->getTextureID (0)); } } // add uniforms for (const auto& cur : this->m_uniforms) { UniformEntry* entry = cur.second; switch (entry->type) { case Double: glUniform1d (entry->id, *reinterpret_cast (entry->value)); break; case Float: glUniform1f (entry->id, *reinterpret_cast (entry->value)); break; case Integer: glUniform1i (entry->id, *reinterpret_cast (entry->value)); break; case Vector4: glUniform4fv (entry->id, 1, glm::value_ptr (*reinterpret_cast (entry->value))); break; case Vector3: glUniform3fv (entry->id, 1, glm::value_ptr (*reinterpret_cast (entry->value))); break; case Vector2: glUniform2fv (entry->id, 1, glm::value_ptr (*reinterpret_cast (entry->value))); break; case Matrix4: glUniformMatrix4fv (entry->id, 1, GL_FALSE, glm::value_ptr (*reinterpret_cast (entry->value))); break; } } // add reference uniforms for (const auto& cur : this->m_referenceUniforms) { ReferenceUniformEntry* entry = cur.second; switch (entry->type) { case Double: glUniform1d (entry->id, *reinterpret_cast (*entry->value)); break; case Float: glUniform1f (entry->id, *reinterpret_cast (*entry->value)); break; case Integer: glUniform1i (entry->id, *reinterpret_cast (*entry->value)); break; case Vector4: glUniform4fv (entry->id, 1, glm::value_ptr (*reinterpret_cast (*entry->value))); break; case Vector3: glUniform3fv (entry->id, 1, glm::value_ptr (*reinterpret_cast (*entry->value))); break; case Vector2: glUniform2fv (entry->id, 1, glm::value_ptr (*reinterpret_cast (*entry->value))); break; case Matrix4: glUniformMatrix4fv (entry->id, 1, GL_FALSE, glm::value_ptr (*reinterpret_cast (*entry->value))); break; } } // used in animations when one of the frames is vertical instead of horizontal // rotation with translation = origin and end of the image to display if (this->g_Texture0Rotation != -1) glUniform4f (this->g_Texture0Rotation, rotation.x, rotation.y, rotation.z, rotation.w); // this actually picks the origin point of the image from the atlast if (this->g_Texture0Translation != -1) glUniform2f (this->g_Texture0Translation, translation.x, translation.y); for (const auto& cur : this->m_attribs) { glEnableVertexAttribArray (cur->id); glBindBuffer (GL_ARRAY_BUFFER, *cur->value); glVertexAttribPointer (cur->id, cur->elements, cur->type, GL_FALSE, 0, nullptr); if (DEBUG) glObjectLabel (GL_BUFFER, *cur->value, -1, ( "Image " + std::to_string (this->getMaterial ()->getImage ()->getId ()) + " Pass " + this->m_pass->getShader() + " " + cur->name ).c_str () ); } // start actual rendering now glBindBuffer (GL_ARRAY_BUFFER, this->a_Position); glDrawArrays (GL_TRIANGLES, 0, 6); // disable vertex attribs array and textures for (const auto& cur : this->m_attribs) glDisableVertexAttribArray (cur->id); // unbind all the used textures glActiveTexture (GL_TEXTURE0); glBindTexture (GL_TEXTURE_2D, 0); // continue on the map from the second texture if (this->m_finalTextures.empty () == false) { for (const auto& cur : this->m_finalTextures) { glActiveTexture (GL_TEXTURE0 + cur.first); glBindTexture (GL_TEXTURE_2D, 0); } } } const CMaterial* CPass::getMaterial () const { return this->m_material; } void CPass::setDestination (const CFBO* drawTo) { this->m_drawTo = drawTo; } void CPass::setInput (const ITexture* input) { this->m_input = input; } void CPass::setModelViewProjectionMatrix (const glm::mat4* projection) { this->m_modelViewProjectionMatrix = projection; } void CPass::setModelMatrix (glm::mat4 model) { this->m_modelMatrix = model; } void CPass::setTexCoord (GLuint texcoord) { this->a_TexCoord = texcoord; } void CPass::setPosition (GLuint position) { this->a_Position = position; } Core::Objects::Images::Materials::CPass* CPass::getPass () { return this->m_pass; } GLuint CPass::compileShader (Render::Shaders::Compiler* shader, GLuint type) { // reserve shaders in OpenGL GLuint shaderID = glCreateShader (type); // give shader's source code to OpenGL to be compiled const char* sourcePointer = shader->getCompiled ().c_str (); glShaderSource (shaderID, 1, &sourcePointer, nullptr); glCompileShader (shaderID); GLint result = GL_FALSE; int infoLogLength = 0; // ensure the vertex shader was correctly compiled glGetShaderiv (shaderID, GL_COMPILE_STATUS, &result); glGetShaderiv (shaderID, GL_INFO_LOG_LENGTH, &infoLogLength); if (infoLogLength > 0) { char* logBuffer = new char [infoLogLength + 1]; // ensure logBuffer ends with a \0 memset (logBuffer, 0, infoLogLength + 1); // get information about the error glGetShaderInfoLog (shaderID, infoLogLength, nullptr, logBuffer); // throw an exception about the issue std::stringstream buffer; buffer << logBuffer << std::endl << "Compiled source code:" << std::endl << shader->getCompiled (); // free the buffer delete[] logBuffer; // throw an exception sLog.exception (buffer.str ()); } return shaderID; } void CPass::setupShaders () { // ensure the constants are defined const ITexture* texture0 = this->m_material->getImage ()->getTexture (); // TODO: THE VALUES ARE THE SAME AS THE ENUMERATION, SO MAYBE IT HAS TO BE SPECIFIED FOR THE TEXTURE 0 OF ALL ELEMENTS? if (texture0 != nullptr) { if (texture0->getFormat () == ITexture::TextureFormat::RG88) { this->m_pass->insertCombo ("TEX0FORMAT", 8); } else if (texture0->getFormat () == ITexture::TextureFormat::R8) { this->m_pass->insertCombo ("TEX0FORMAT", 9); } } // prepare the shaders this->m_fragShader = new Render::Shaders::Compiler ( this->m_material->getImage ()->getContainer (), this->m_pass->getShader (), Shaders::Compiler::Type_Pixel, this->m_pass->getCombos (), &m_foundCombos, this->m_pass->getTextures (), this->m_pass->getConstants () ); this->m_fragShader->precompile (); this->m_vertShader = new Render::Shaders::Compiler ( this->m_material->getImage ()->getContainer (), this->m_pass->getShader (), Shaders::Compiler::Type_Vertex, this->m_pass->getCombos (), &m_foundCombos, this->m_pass->getTextures (), this->m_pass->getConstants () ); this->m_vertShader->precompile (); this->m_fragShader->precompile (); this->m_vertShader->precompile (); // compile the shaders GLuint vertexShaderID = compileShader (this->m_vertShader, GL_VERTEX_SHADER); GLuint fragmentShaderID = compileShader (this->m_fragShader, GL_FRAGMENT_SHADER); // create the final program this->m_programID = glCreateProgram (); // link the shaders together glAttachShader (this->m_programID, vertexShaderID); glAttachShader (this->m_programID, fragmentShaderID); glLinkProgram (this->m_programID); // check that the shader was properly linked GLint result = GL_FALSE; int infoLogLength = 0; glGetProgramiv (this->m_programID, GL_LINK_STATUS, &result); glGetProgramiv (this->m_programID, GL_INFO_LOG_LENGTH, &infoLogLength); if (infoLogLength > 0) { char* logBuffer = new char [infoLogLength + 1]; // ensure logBuffer ends with a \0 memset (logBuffer, 0, infoLogLength + 1); // get information about the error glGetProgramInfoLog (this->m_programID, infoLogLength, nullptr, logBuffer); // throw an exception about the issue std::string message = logBuffer; // free the buffer delete[] logBuffer; // throw an exception sLog.exception (message); } if (DEBUG) { glObjectLabel (GL_PROGRAM, this->m_programID, -1, this->m_pass->getShader ().c_str ()); glObjectLabel (GL_SHADER, vertexShaderID, -1, (this->m_pass->getShader () + ".vert").c_str ()); glObjectLabel (GL_SHADER, fragmentShaderID, -1, (this->m_pass->getShader () + ".frag").c_str ()); } // after being liked shaders can be dettached and deleted glDetachShader (this->m_programID, vertexShaderID); glDetachShader (this->m_programID, fragmentShaderID); glDeleteShader (vertexShaderID); glDeleteShader (fragmentShaderID); // setup uniforms this->setupUniforms (); // setup attributes too this->setupAttributes (); // get information from the program, like uniforms, etc // support three textures for now this->g_Texture0Rotation = glGetUniformLocation (this->m_programID, "g_Texture0Rotation"); this->g_Texture0Translation = glGetUniformLocation (this->m_programID, "g_Texture0Translation"); } void CPass::setupAttributes () { this->addAttribute ("a_TexCoord", GL_FLOAT, 2, &this->a_TexCoord); this->addAttribute ("a_Position", GL_FLOAT, 3, &this->a_Position); } void CPass::setupUniforms () { // resolve the main texture const ITexture* texture = this->resolveTexture (this->m_material->getImage ()->getTexture (), 0); // register all the texture uniforms with correct values this->addUniform ("g_Texture0", 0); this->addUniform ("g_Texture1", 1); this->addUniform ("g_Texture2", 2); this->addUniform ("g_Texture3", 3); this->addUniform ("g_Texture4", 4); this->addUniform ("g_Texture5", 5); this->addUniform ("g_Texture6", 6); this->addUniform ("g_Texture7", 7); this->addUniform ("g_Texture0Resolution", texture->getResolution ()); // do the real, final texture setup for the whole process { auto cur = this->m_textures.begin (); auto end = this->m_textures.end (); auto fragCur = this->m_fragShader->getTextures ().begin (); auto fragEnd = this->m_fragShader->getTextures ().end (); auto vertCur = this->m_vertShader->getTextures ().begin (); auto vertEnd = this->m_vertShader->getTextures ().end (); auto bindCur = this->m_material->getMaterial ()->getTextureBinds ().begin (); auto bindEnd = this->m_material->getMaterial ()->getTextureBinds ().end (); int index = 1; // technically m_textures should have the right amount of textures // but better be safe than sorry while (bindCur != bindEnd || cur != end || fragCur != fragEnd || vertCur != vertEnd) { if (bindCur != bindEnd) { this->m_finalTextures.insert_or_assign ((*bindCur).first, nullptr); bindCur ++; } if (cur != end) { if ((*cur) != nullptr) this->m_finalTextures.insert_or_assign (index, *cur); index ++; cur ++; } if (fragCur != fragEnd) { std::string textureName = (*fragCur).second; try { // resolve the texture first const ITexture* textureRef = nullptr; if (textureName.find ("_rt_") == 0) { textureRef = this->getMaterial ()->getEffect ()->findFBO (textureName); if (textureRef == nullptr) textureRef = this->getMaterial ()->getImage ()->getScene ()->findFBO (textureName); } else textureRef = this->getMaterial ()->getImage ()->getScene ()->getContext ().resolveTexture (textureName); this->m_finalTextures.insert_or_assign ((*fragCur).first, textureRef); } catch (std::runtime_error& ex) { sLog.error ("Cannot resolve texture ", textureName, " for fragment shader ", ex.what ()); } fragCur ++; } if (vertCur != vertEnd) { std::string textureName = (*vertCur).second; try { // resolve the texture first const ITexture* textureRef = nullptr; if (textureName.find ("_rt_") == 0) { textureRef = this->getMaterial ()->getEffect ()->findFBO (textureName); if (textureRef == nullptr) textureRef = this->getMaterial ()->getImage ()->getScene ()->findFBO (textureName); } else textureRef = this->getMaterial ()->getImage ()->getScene ()->getContext ().resolveTexture (textureName); this->m_finalTextures.insert_or_assign ((*vertCur).first, textureRef); } catch (std::runtime_error& ex) { sLog.error ("Cannot resolve texture ", textureName, " for vertex shader ", ex.what ()); } vertCur ++; } } } for (const auto& cur : this->m_finalTextures) { std::ostringstream namestream; namestream << "g_Texture" << cur.first << "Resolution"; texture = this->resolveTexture (cur.second, cur.first, texture); this->addUniform (namestream.str (), texture->getResolution ()); } auto projection = this->getMaterial ()->getImage ()->getScene ()->getScene ()->getOrthogonalProjection (); // register variables like brightness and alpha with some default value this->addUniform ("g_Brightness", this->m_material->getImage ()->getImage ()->getBrightness ()); this->addUniform ("g_UserAlpha", this->m_material->getImage ()->getImage ()->getAlpha ()); this->addUniform ("g_Alpha", this->m_material->getImage ()->getImage ()->getAlpha ()); this->addUniform ("g_Color", this->m_material->getImage ()->getImage ()->getColor ()); // TODO: VALIDATE THAT G_COMPOSITECOLOR REALLY COMES FROM THIS ONE this->addUniform ("g_CompositeColor", this->m_material->getImage ()->getImage ()->getColor ()); // add some external variables this->addUniform ("g_Time", &g_Time); // add model-view-projection matrix this->addUniform ("g_ModelViewProjectionMatrix", &this->m_modelViewProjectionMatrix); this->addUniform ("g_PointerPosition", this->m_material->getImage ()->getScene ()->getMousePosition ()); this->addUniform ("g_PointerPositionLast", this->m_material->getImage ()->getScene ()->getMousePositionLast ()); this->addUniform ("g_EffectTextureProjectionMatrix", glm::mat4(1.0)); this->addUniform ("g_EffectTextureProjectionMatrixInverse", glm::mat4(1.0)); this->addUniform ("g_TexelSize", glm::vec2 (1.0 / projection->getWidth (), 1.0 / projection->getHeight ())); this->addUniform ("g_TexelSizeHalf", glm::vec2 (0.5 / projection->getWidth (), 0.5 / projection->getHeight ())); } void CPass::addAttribute (const std::string& name, GLint type, GLint elements, const GLuint* value) { GLint id = glGetAttribLocation (this->m_programID, name.c_str ()); if (id == -1) return; this->m_attribs.emplace_back ( new AttribEntry (id, name, type, elements, value) ); } template void CPass::addUniform (const std::string& name, UniformType type, T value) { GLint id = glGetUniformLocation (this->m_programID, name.c_str ()); // parameter not found, can be ignored if (id == -1) return; // build a copy of the value and allocate it somewhere T* newValue = new T (value); // uniform found, add it to the list this->m_uniforms.insert_or_assign (name, new UniformEntry (id, name, type, newValue)); } template void CPass::addUniform (const std::string& name, UniformType type, T* value) { // this version is used to reference to system variables so things like g_Time works fine GLint id = glGetUniformLocation (this->m_programID, name.c_str ()); // parameter not found, can be ignored if (id == -1) return; // uniform found, add it to the list this->m_uniforms.insert_or_assign (name, new UniformEntry (id, name, type, value)); } template void CPass::addUniform (const std::string& name, UniformType type, T** value) { // this version is used to reference to system variables so things like g_Time works fine GLint id = glGetUniformLocation (this->m_programID, name.c_str ()); // parameter not found, can be ignored if (id == -1) return; // uniform found, add it to the list this->m_referenceUniforms.insert_or_assign ( name, new ReferenceUniformEntry (id, name, type, reinterpret_cast (value)) ); } void CPass::setupTextures () { auto cur = this->m_pass->getTextures ().begin (); auto end = this->m_pass->getTextures ().end (); for (int index = 0; cur != end; cur ++, index ++) { // ignore first texture as that'll be the input of the last pass/image (unless the image is an FBO) if (index == 0) continue; if ((*cur).find ("_rt_") == 0) { const CFBO* fbo = this->m_material->m_effect->findFBO ((*cur)); if (fbo == nullptr) fbo = this->m_material->getImage ()->getScene ()->findFBO ((*cur)); if (fbo != nullptr) { this->m_fbos.insert_or_assign (index, fbo); this->m_textures.emplace_back ( fbo ); } // _rt_texture } else { if ((*cur) == "") { this->m_textures.emplace_back (nullptr); } else { this->m_textures.emplace_back ( this->m_material->getImage ()->getScene ()->getContext ().resolveTexture ((*cur)) ); } } } } void CPass::setupShaderVariables () { // find variables in the shaders and set the value with the constants if possible for (const auto& cur : this->m_pass->getConstants ()) { CShaderVariable* vertexVar = this->m_vertShader->findParameter (cur.first); CShaderVariable* pixelVar = this->m_fragShader->findParameter (cur.first); // variable not found, can be ignored if (vertexVar == nullptr && pixelVar == nullptr) continue; // get one instance of it CShaderVariable* var = vertexVar == nullptr ? pixelVar : vertexVar; // ensure the shader's and the constant are of the same type if (cur.second->getType () == var->getType ()) { this->addUniform (var->getName (), cur.second); continue; } // there's situations where this type mismatch is actually expected // integers and floats are equivalent, this could be detected at load time // but that'd mean to compile the shader in the load, and not on the render stage // so take into account these conversions here if (cur.second->is () == true && var->is () == true) { // create an integer value from a float this->addUniform (var->getName (), static_cast (*cur.second->as ()->getValue ())); } else if (cur.second->is () == true && var->is () == true) { // create a float value from an integer this->addUniform (var->getName (), static_cast (*cur.second->as ()->getValue ())); } else if (cur.second->is () == true && var->is () == true) { CShaderConstantVector4* val = cur.second->as (); // create a new vector2 with the first two values this->addUniform (var->getName (), {val->getValue ()->x, val->getValue ()->y}); } else if (cur.second->is () == true && var->is () == true) { CShaderConstantVector4* val = cur.second->as (); this->addUniform (var->getName (), {val->getValue ()->x, val->getValue ()->y, val->getValue ()->z}); } else { sLog.exception ( "Constant ", cur.first, " type does not match pixel/vertex shader variable and cannot be converted (", cur.second->getType (), " to ", var->getType () ); } } for (const auto& cur : this->m_vertShader->getParameters ()) if (this->m_uniforms.find (cur->getName ()) == this->m_uniforms.end ()) this->addUniform (cur); for (const auto& cur : this->m_fragShader->getParameters ()) if (this->m_uniforms.find (cur->getName ()) == this->m_uniforms.end ()) this->addUniform (cur); } // define some basic methods for the template void CPass::addUniform (CShaderVariable* value) { if (value->is ()) this->addUniform (value->getName (), const_cast (reinterpret_cast (value->as ()->getValue ()))); else if (value->is ()) this->addUniform (value->getName (), const_cast (reinterpret_cast (value->as ()->getValue ()))); else if (value->is ()) this->addUniform (value->getName (), const_cast (reinterpret_cast (value->as ()->getValue ()))); else if (value->is ()) this->addUniform (value->getName (), const_cast (reinterpret_cast (value->as ()->getValue ()))); else if (value->is ()) this->addUniform (value->getName (), const_cast (reinterpret_cast (value->as ()->getValue ()))); } void CPass::addUniform (const std::string& name, CShaderConstant* value) { // now determine the constant's type and register the correct uniform for it if (value->is ()) this->addUniform (name, value->as ()->getValue ()); else if (value->is ()) this->addUniform (name, value->as ()->getValue ()); else if (value->is ()) this->addUniform (name, value->as ()->getValue ()); } void CPass::addUniform (const std::string& name, int value) { this->addUniform (name, UniformType::Integer, value); } void CPass::addUniform (const std::string& name, const int* value) { this->addUniform (name, UniformType::Integer, value); } void CPass::addUniform (const std::string& name, const int** value) { this->addUniform (name, UniformType::Integer, value); } void CPass::addUniform (const std::string& name, double value) { this->addUniform (name, UniformType::Double, value); } void CPass::addUniform (const std::string& name, const double* value) { this->addUniform (name, UniformType::Double, value); } void CPass::addUniform (const std::string& name, const double** value) { this->addUniform (name, UniformType::Double, value); } void CPass::addUniform (const std::string& name, float value) { this->addUniform (name, UniformType::Float, value); } void CPass::addUniform (const std::string& name, const float* value) { this->addUniform (name, UniformType::Float, value); } void CPass::addUniform (const std::string& name, const float** value) { this->addUniform (name, UniformType::Float, value); } void CPass::addUniform (const std::string& name, glm::vec2 value) { this->addUniform (name, UniformType::Vector2, value); } void CPass::addUniform (const std::string& name, const glm::vec2* value) { this->addUniform (name, UniformType::Vector2, value); } void CPass::addUniform (const std::string& name, const glm::vec2** value) { this->addUniform (name, UniformType::Vector2, value); } void CPass::addUniform (const std::string& name, glm::vec3 value) { this->addUniform (name, UniformType::Vector3, value); } void CPass::addUniform (const std::string& name, const glm::vec3* value) { this->addUniform (name, UniformType::Vector3, value); } void CPass::addUniform (const std::string& name, const glm::vec3** value) { this->addUniform (name, UniformType::Vector3, value); } void CPass::addUniform (const std::string& name, glm::vec4 value) { this->addUniform (name, UniformType::Vector4, value); } void CPass::addUniform (const std::string& name, const glm::vec4* value) { this->addUniform (name, UniformType::Vector4, value); } void CPass::addUniform (const std::string& name, const glm::vec4** value) { this->addUniform (name, UniformType::Vector4, value); } void CPass::addUniform (const std::string& name, glm::mat4 value) { this->addUniform (name, UniformType::Matrix4, value); } void CPass::addUniform (const std::string& name, const glm::mat4* value) { this->addUniform (name, UniformType::Matrix4, value); } void CPass::addUniform (const std::string& name, const glm::mat4** value) { this->addUniform (name, UniformType::Matrix4, value); }