上传文件至 /

This commit is contained in:
mei 2025-03-09 14:58:32 +08:00
parent 5f593fca2e
commit 4d6c36f5a4

62
transcribe_audio.py Normal file
View File

@ -0,0 +1,62 @@
import os
import whisper
from tqdm import tqdm
import torch
import re
import opencc
def transcribe_audio_folder(input_dir, output_dir):
# 加载多语言大模型使用GPU加速
model = whisper.load_model("base", device='cuda')
# 确保输出目录存在
os.makedirs(output_dir, exist_ok=True)
# 初始化 OpenCC 转换器
converter = opencc.OpenCC('t2s.json')
# 遍历目录中的所有音频文件
audio_exts = ['.mp3', '.wav', '.m4a', '.flac']
audio_files = [f for f in os.listdir(input_dir)
if os.path.splitext(f)[1].lower() in audio_exts]
# 批量转写
for filename in tqdm(audio_files):
file_path = os.path.join(input_dir, filename)
try:
# 使用GPU加速fp16精度
result = model.transcribe(
file_path,
language="zh",
task="transcribe",
fp16=('cuda' == "cuda"),
verbose=False
)
# 将繁体中文转换为简体中文
simplified_text = converter.convert(result["text"])
# 添加断句
sentence_endings = re.compile(r'([。!?])')
sentences = sentence_endings.split(simplified_text)
sentences = [s.strip() for s in sentences if s.strip()]
formatted_text = '\n'.join(sentences)
# 生成输出文件名
base_name = os.path.splitext(filename)[0]
output_path = os.path.join(output_dir, f"{base_name}.txt")
# 保存简体中文文本
with open(output_path, "w", encoding="utf-8") as f:
f.write(formatted_text)
except Exception as e:
print(f"处理文件 {filename} 时出错: {str(e)}")
if __name__ == "__main__":
# 使用示例
transcribe_audio_folder(
input_dir="/home/mei/work/asr/data",
output_dir="/home/mei/work/asr/out"
)