2.1.0 (#253)
* Operating system specific installer options * Update dependencies * Sorting before NMS according to the standard * Minor typing fix * Change the wording * Update preview.py (#222) Added a release listener to the preview frame slider, this will update the frame preview with the latest frame * Combine preview slider listener * Remove change listener * Introduce multi source (#223) * Implement multi source * Adjust face enhancer and face debugger to multi source * Implement multi source to UI * Implement multi source to UI part2 * Implement multi source to UI part3 * Implement multi source to UI part4 * Some cleanup * Add face occluder (#225) (#226) * Add face occluder (#225) * add face-occluder (commandline only) * review 1 * Update face_masker.py * Update face_masker.py * Add gui & fix typing * Minor naming cleanup * Minor naming cleanup part2 --------- Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com> * Update usage information * Fix averaged normed_embedding * Remove blur from face occluder, enable accelerators * Switch to RANSAC with 100 threshold * Update face_enhancer.py (#229) * Update face_debugger.py (#230) * Split utilities (#232) * Split utilities * Split utilities part2 * Split utilities part3 * Split utilities part4 * Some cleanup * Implement log level support (#233) * Implement log level support * Fix testing * Implement debug logger * Implement debug logger * Fix alignment offset (#235) * Update face_helper.py * fix 2 * Enforce virtual environment via installer * Enforce virtual environment via installer * Enforce virtual environment via installer * Enforce virtual environment via installer * Feat/multi process reference faces (#239) * Multi processing aware reference faces * First clean up and joining of files * Finalize the face store * Reduce similar face detection to one set, use __name__ for scopes in logger * Rename to face_occluder * Introduce ModelSet type * Improve webcam error handling * Prevent null pointer on is_image() and is_video() * Prevent null pointer on is_image() and is_video() * Fix find similar faces * Fix find similar faces * Fix process_images for face enhancer * Bunch of minor improvements * onnxruntime for ROCM under linux * Improve mask related naming * Fix falsy import * Fix typo * Feat/face parser refactoring (#247) * Face parser update (#244) * face-parser * Update face_masker.py * update debugger * Update globals.py * Update face_masker.py * Refactor code to split occlusion from region * fix (#246) * fix * fix debugger resolution * flip input to horizontal * Clean up UI * Reduce the regions to inside face only * Reduce the regions to inside face only --------- Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com> * Fix enhancer, remove useless dest in add_argument() * Prevent unselect of the face_mask_regions via UI * Prepare next release * Shorten arguments that have choices and nargs * Add missing clear to face debugger --------- Co-authored-by: Mathias <github@feroc.de> Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com>
This commit is contained in:
parent
e70430703b
commit
3a5fe2a602
BIN
.github/preview.png
vendored
BIN
.github/preview.png
vendored
Binary file not shown.
Before Width: | Height: | Size: 1.1 MiB After Width: | Height: | Size: 1.2 MiB |
2
.github/workflows/ci.yml
vendored
2
.github/workflows/ci.yml
vendored
@ -30,6 +30,6 @@ jobs:
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- run: python install.py --torch cpu --onnxruntime default
|
||||
- run: python install.py --torch cpu --onnxruntime default --skip-venv
|
||||
- run: pip install pytest
|
||||
- run: pytest
|
||||
|
13
README.md
13
README.md
@ -31,7 +31,7 @@ python run.py [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-s SOURCE_PATH, --source SOURCE_PATH select a source image
|
||||
-s SOURCE_PATHS, --source SOURCE_PATHS select a source image
|
||||
-t TARGET_PATH, --target TARGET_PATH select a target image or video
|
||||
-o OUTPUT_PATH, --output OUTPUT_PATH specify the output file or directory
|
||||
-v, --version show program's version number and exit
|
||||
@ -39,9 +39,10 @@ options:
|
||||
misc:
|
||||
--skip-download omit automate downloads and lookups
|
||||
--headless run the program in headless mode
|
||||
--log-level {error,warn,info,debug} choose from the available log levels
|
||||
|
||||
execution:
|
||||
--execution-providers {cpu} [{cpu} ...] choose from the available execution providers
|
||||
--execution-providers EXECUTION_PROVIDERS [EXECUTION_PROVIDERS ...] choose from the available execution providers (choices: cpu, ...)
|
||||
--execution-thread-count [1-128] specify the number of execution threads
|
||||
--execution-queue-count [1-32] specify the number of execution queries
|
||||
--max-memory [0-128] specify the maximum amount of ram to be used (in gb)
|
||||
@ -61,8 +62,10 @@ face selector:
|
||||
--reference-frame-number REFERENCE_FRAME_NUMBER specify the number of the reference frame
|
||||
|
||||
face mask:
|
||||
--face-mask-types FACE_MASK_TYPES [FACE_MASK_TYPES ...] choose from the available face mask types (choices: box, occlusion, region)
|
||||
--face-mask-blur [0.0-1.0] specify the blur amount for face mask
|
||||
--face-mask-padding FACE_MASK_PADDING [FACE_MASK_PADDING ...] specify the face mask padding (top, right, bottom, left) in percent
|
||||
--face-mask-regions FACE_MASK_REGIONS [FACE_MASK_REGIONS ...] choose from the available face mask regions (choices: skin, left-eyebrow, right-eyebrow, left-eye, right-eye, eye-glasses, nose, mouth, upper-lip, lower-lip)
|
||||
|
||||
frame extraction:
|
||||
--trim-frame-start TRIM_FRAME_START specify the start frame for extraction
|
||||
@ -80,12 +83,12 @@ output creation:
|
||||
|
||||
frame processors:
|
||||
--frame-processors FRAME_PROCESSORS [FRAME_PROCESSORS ...] choose from the available frame processors (choices: face_debugger, face_enhancer, face_swapper, frame_enhancer, ...)
|
||||
--face-debugger-items {bbox,kps,face-mask,score} [{bbox,kps,face-mask,score} ...] specify the face debugger items
|
||||
--face-debugger-items FACE_DEBUGGER_ITEMS [FACE_DEBUGGER_ITEMS ...] specify the face debugger items (choices: bbox, kps, face-mask, score)
|
||||
--face-enhancer-model {codeformer,gfpgan_1.2,gfpgan_1.3,gfpgan_1.4,gpen_bfr_256,gpen_bfr_512,restoreformer} choose the model for the frame processor
|
||||
--face-enhancer-blend [0-100] specify the blend factor for the frame processor
|
||||
--face-enhancer-blend [0-100] specify the blend amount for the frame processor
|
||||
--face-swapper-model {blendswap_256,inswapper_128,inswapper_128_fp16,simswap_256,simswap_512_unofficial} choose the model for the frame processor
|
||||
--frame-enhancer-model {real_esrgan_x2plus,real_esrgan_x4plus,real_esrnet_x4plus} choose the model for the frame processor
|
||||
--frame-enhancer-blend [0-100] specify the blend factor for the frame processor
|
||||
--frame-enhancer-blend [0-100] specify the blend amount for the frame processor
|
||||
|
||||
uis:
|
||||
--ui-layouts UI_LAYOUTS [UI_LAYOUTS ...] choose from the available ui layouts (choices: benchmark, webcam, default, ...)
|
||||
|
5
facefusion/choices.py
Normal file → Executable file
5
facefusion/choices.py
Normal file → Executable file
@ -2,8 +2,7 @@ from typing import List
|
||||
|
||||
import numpy
|
||||
|
||||
from facefusion.typing import FaceSelectorMode, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, TempFrameFormat, OutputVideoEncoder
|
||||
|
||||
from facefusion.typing import FaceSelectorMode, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, FaceMaskType, FaceMaskRegion, TempFrameFormat, OutputVideoEncoder
|
||||
|
||||
face_analyser_orders : List[FaceAnalyserOrder] = [ 'left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best' ]
|
||||
face_analyser_ages : List[FaceAnalyserAge] = [ 'child', 'teen', 'adult', 'senior' ]
|
||||
@ -11,6 +10,8 @@ face_analyser_genders : List[FaceAnalyserGender] = [ 'male', 'female' ]
|
||||
face_detector_models : List[str] = [ 'retinaface', 'yunet' ]
|
||||
face_detector_sizes : List[str] = [ '160x160', '320x320', '480x480', '512x512', '640x640', '768x768', '960x960', '1024x1024' ]
|
||||
face_selector_modes : List[FaceSelectorMode] = [ 'reference', 'one', 'many' ]
|
||||
face_mask_types : List[FaceMaskType] = [ 'box', 'occlusion', 'region' ]
|
||||
face_mask_regions : List[FaceMaskRegion] = [ 'skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'eye-glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip' ]
|
||||
temp_frame_formats : List[TempFrameFormat] = [ 'jpg', 'png' ]
|
||||
output_video_encoders : List[OutputVideoEncoder] = [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc' ]
|
||||
|
||||
|
5
facefusion/cli_helper.py
Normal file
5
facefusion/cli_helper.py
Normal file
@ -0,0 +1,5 @@
|
||||
from typing import List, Any
|
||||
|
||||
|
||||
def create_metavar(ranges : List[Any]) -> str:
|
||||
return '[' + str(ranges[0]) + '-' + str(ranges[-1]) + ']'
|
@ -10,7 +10,8 @@ import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.typing import Frame, ModelValue
|
||||
from facefusion.vision import get_video_frame, count_video_frame_total, read_image, detect_fps
|
||||
from facefusion.utilities import resolve_relative_path, conditional_download
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.download import conditional_download
|
||||
|
||||
CONTENT_ANALYSER = None
|
||||
THREAD_LOCK : threading.Lock = threading.Lock()
|
||||
@ -90,7 +91,7 @@ def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool:
|
||||
frame_range = range(start_frame or 0, end_frame or video_frame_total)
|
||||
rate = 0.0
|
||||
counter = 0
|
||||
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =') as progress:
|
||||
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
|
||||
for frame_number in frame_range:
|
||||
if frame_number % int(fps) == 0:
|
||||
frame = get_video_frame(video_path, frame_number)
|
||||
|
@ -3,6 +3,7 @@ import os
|
||||
os.environ['OMP_NUM_THREADS'] = '1'
|
||||
|
||||
import signal
|
||||
import ssl
|
||||
import sys
|
||||
import warnings
|
||||
import platform
|
||||
@ -12,92 +13,104 @@ from argparse import ArgumentParser, HelpFormatter
|
||||
|
||||
import facefusion.choices
|
||||
import facefusion.globals
|
||||
from facefusion.face_analyser import get_one_face
|
||||
from facefusion.face_reference import get_face_reference, set_face_reference
|
||||
from facefusion.vision import get_video_frame, read_image
|
||||
from facefusion import face_analyser, content_analyser, metadata, wording
|
||||
from facefusion.face_analyser import get_one_face, get_average_face
|
||||
from facefusion.face_store import get_reference_faces, append_reference_face
|
||||
from facefusion.vision import get_video_frame, detect_fps, read_image, read_static_images
|
||||
from facefusion import face_analyser, face_masker, content_analyser, metadata, logger, wording
|
||||
from facefusion.content_analyser import analyse_image, analyse_video
|
||||
from facefusion.processors.frame.core import get_frame_processors_modules, load_frame_processor_module
|
||||
from facefusion.utilities import is_image, is_video, detect_fps, compress_image, merge_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clear_temp, list_module_names, encode_execution_providers, decode_execution_providers, normalize_output_path, normalize_padding, create_metavar, update_status
|
||||
from facefusion.cli_helper import create_metavar
|
||||
from facefusion.execution_helper import encode_execution_providers, decode_execution_providers
|
||||
from facefusion.normalizer import normalize_output_path, normalize_padding
|
||||
from facefusion.filesystem import is_image, is_video, list_module_names, get_temp_frame_paths, create_temp, move_temp, clear_temp
|
||||
from facefusion.ffmpeg import extract_frames, compress_image, merge_video, restore_audio
|
||||
|
||||
onnxruntime.set_default_logger_severity(3)
|
||||
warnings.filterwarnings('ignore', category = UserWarning, module = 'gradio')
|
||||
warnings.filterwarnings('ignore', category = UserWarning, module = 'torchvision')
|
||||
|
||||
if platform.system().lower() == 'darwin':
|
||||
ssl._create_default_https_context = ssl._create_unverified_context
|
||||
|
||||
|
||||
def cli() -> None:
|
||||
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
|
||||
program = ArgumentParser(formatter_class = lambda prog: HelpFormatter(prog, max_help_position = 120), add_help = False)
|
||||
# general
|
||||
program.add_argument('-s', '--source', help = wording.get('source_help'), dest = 'source_path')
|
||||
program.add_argument('-s', '--source', action = 'append', help = wording.get('source_help'), dest = 'source_paths')
|
||||
program.add_argument('-t', '--target', help = wording.get('target_help'), dest = 'target_path')
|
||||
program.add_argument('-o', '--output', help = wording.get('output_help'), dest = 'output_path')
|
||||
program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
|
||||
# misc
|
||||
group_misc = program.add_argument_group('misc')
|
||||
group_misc.add_argument('--skip-download', help = wording.get('skip_download_help'), dest = 'skip_download', action = 'store_true')
|
||||
group_misc.add_argument('--headless', help = wording.get('headless_help'), dest = 'headless', action = 'store_true')
|
||||
group_misc.add_argument('--skip-download', help = wording.get('skip_download_help'), action = 'store_true')
|
||||
group_misc.add_argument('--headless', help = wording.get('headless_help'), action = 'store_true')
|
||||
group_misc.add_argument('--log-level', help = wording.get('log_level_help'), default = 'info', choices = logger.get_log_levels())
|
||||
# execution
|
||||
execution_providers = encode_execution_providers(onnxruntime.get_available_providers())
|
||||
group_execution = program.add_argument_group('execution')
|
||||
group_execution.add_argument('--execution-providers', help = wording.get('execution_providers_help'), dest = 'execution_providers', default = [ 'cpu' ], choices = encode_execution_providers(onnxruntime.get_available_providers()), nargs = '+')
|
||||
group_execution.add_argument('--execution-thread-count', help = wording.get('execution_thread_count_help'), dest = 'execution_thread_count', type = int, default = 4, choices = facefusion.choices.execution_thread_count_range, metavar = create_metavar(facefusion.choices.execution_thread_count_range))
|
||||
group_execution.add_argument('--execution-queue-count', help = wording.get('execution_queue_count_help'), dest = 'execution_queue_count', type = int, default = 1, choices = facefusion.choices.execution_queue_count_range, metavar = create_metavar(facefusion.choices.execution_queue_count_range))
|
||||
group_execution.add_argument('--max-memory', help = wording.get('max_memory_help'), dest = 'max_memory', type = int, choices = facefusion.choices.max_memory_range, metavar = create_metavar(facefusion.choices.max_memory_range))
|
||||
group_execution.add_argument('--execution-providers', help = wording.get('execution_providers_help').format(choices = ', '.join(execution_providers)), default = [ 'cpu' ], choices = execution_providers, nargs = '+', metavar = 'EXECUTION_PROVIDERS')
|
||||
group_execution.add_argument('--execution-thread-count', help = wording.get('execution_thread_count_help'), type = int, default = 4, choices = facefusion.choices.execution_thread_count_range, metavar = create_metavar(facefusion.choices.execution_thread_count_range))
|
||||
group_execution.add_argument('--execution-queue-count', help = wording.get('execution_queue_count_help'), type = int, default = 1, choices = facefusion.choices.execution_queue_count_range, metavar = create_metavar(facefusion.choices.execution_queue_count_range))
|
||||
group_execution.add_argument('--max-memory', help = wording.get('max_memory_help'), type = int, choices = facefusion.choices.max_memory_range, metavar = create_metavar(facefusion.choices.max_memory_range))
|
||||
# face analyser
|
||||
group_face_analyser = program.add_argument_group('face analyser')
|
||||
group_face_analyser.add_argument('--face-analyser-order', help = wording.get('face_analyser_order_help'), dest = 'face_analyser_order', default = 'left-right', choices = facefusion.choices.face_analyser_orders)
|
||||
group_face_analyser.add_argument('--face-analyser-age', help = wording.get('face_analyser_age_help'), dest = 'face_analyser_age', choices = facefusion.choices.face_analyser_ages)
|
||||
group_face_analyser.add_argument('--face-analyser-gender', help = wording.get('face_analyser_gender_help'), dest = 'face_analyser_gender', choices = facefusion.choices.face_analyser_genders)
|
||||
group_face_analyser.add_argument('--face-detector-model', help = wording.get('face_detector_model_help'), dest = 'face_detector_model', default = 'retinaface', choices = facefusion.choices.face_detector_models)
|
||||
group_face_analyser.add_argument('--face-detector-size', help = wording.get('face_detector_size_help'), dest = 'face_detector_size', default = '640x640', choices = facefusion.choices.face_detector_sizes)
|
||||
group_face_analyser.add_argument('--face-detector-score', help = wording.get('face_detector_score_help'), dest = 'face_detector_score', type = float, default = 0.5, choices = facefusion.choices.face_detector_score_range, metavar = create_metavar(facefusion.choices.face_detector_score_range))
|
||||
group_face_analyser.add_argument('--face-analyser-order', help = wording.get('face_analyser_order_help'), default = 'left-right', choices = facefusion.choices.face_analyser_orders)
|
||||
group_face_analyser.add_argument('--face-analyser-age', help = wording.get('face_analyser_age_help'), choices = facefusion.choices.face_analyser_ages)
|
||||
group_face_analyser.add_argument('--face-analyser-gender', help = wording.get('face_analyser_gender_help'), choices = facefusion.choices.face_analyser_genders)
|
||||
group_face_analyser.add_argument('--face-detector-model', help = wording.get('face_detector_model_help'), default = 'retinaface', choices = facefusion.choices.face_detector_models)
|
||||
group_face_analyser.add_argument('--face-detector-size', help = wording.get('face_detector_size_help'), default = '640x640', choices = facefusion.choices.face_detector_sizes)
|
||||
group_face_analyser.add_argument('--face-detector-score', help = wording.get('face_detector_score_help'), type = float, default = 0.5, choices = facefusion.choices.face_detector_score_range, metavar = create_metavar(facefusion.choices.face_detector_score_range))
|
||||
# face selector
|
||||
group_face_selector = program.add_argument_group('face selector')
|
||||
group_face_selector.add_argument('--face-selector-mode', help = wording.get('face_selector_mode_help'), dest = 'face_selector_mode', default = 'reference', choices = facefusion.choices.face_selector_modes)
|
||||
group_face_selector.add_argument('--reference-face-position', help = wording.get('reference_face_position_help'), dest = 'reference_face_position', type = int, default = 0)
|
||||
group_face_selector.add_argument('--reference-face-distance', help = wording.get('reference_face_distance_help'), dest = 'reference_face_distance', type = float, default = 0.6, choices = facefusion.choices.reference_face_distance_range, metavar = create_metavar(facefusion.choices.reference_face_distance_range))
|
||||
group_face_selector.add_argument('--reference-frame-number', help = wording.get('reference_frame_number_help'), dest = 'reference_frame_number', type = int, default = 0)
|
||||
group_face_selector.add_argument('--face-selector-mode', help = wording.get('face_selector_mode_help'), default = 'reference', choices = facefusion.choices.face_selector_modes)
|
||||
group_face_selector.add_argument('--reference-face-position', help = wording.get('reference_face_position_help'), type = int, default = 0)
|
||||
group_face_selector.add_argument('--reference-face-distance', help = wording.get('reference_face_distance_help'), type = float, default = 0.6, choices = facefusion.choices.reference_face_distance_range, metavar = create_metavar(facefusion.choices.reference_face_distance_range))
|
||||
group_face_selector.add_argument('--reference-frame-number', help = wording.get('reference_frame_number_help'), type = int, default = 0)
|
||||
# face mask
|
||||
group_face_mask = program.add_argument_group('face mask')
|
||||
group_face_mask.add_argument('--face-mask-blur', help = wording.get('face_mask_blur_help'), dest = 'face_mask_blur', type = float, default = 0.3, choices = facefusion.choices.face_mask_blur_range, metavar = create_metavar(facefusion.choices.face_mask_blur_range))
|
||||
group_face_mask.add_argument('--face-mask-padding', help = wording.get('face_mask_padding_help'), dest = 'face_mask_padding', type = int, default = [ 0, 0, 0, 0 ], nargs = '+')
|
||||
group_face_mask.add_argument('--face-mask-types', help = wording.get('face_mask_types_help').format(choices = ', '.join(facefusion.choices.face_mask_types)), default = [ 'box' ], choices = facefusion.choices.face_mask_types, nargs = '+', metavar = 'FACE_MASK_TYPES')
|
||||
group_face_mask.add_argument('--face-mask-blur', help = wording.get('face_mask_blur_help'), type = float, default = 0.3, choices = facefusion.choices.face_mask_blur_range, metavar = create_metavar(facefusion.choices.face_mask_blur_range))
|
||||
group_face_mask.add_argument('--face-mask-padding', help = wording.get('face_mask_padding_help'), type = int, default = [ 0, 0, 0, 0 ], nargs = '+')
|
||||
group_face_mask.add_argument('--face-mask-regions', help = wording.get('face_mask_regions_help').format(choices = ', '.join(facefusion.choices.face_mask_regions)), default = facefusion.choices.face_mask_regions, choices = facefusion.choices.face_mask_regions, nargs = '+', metavar = 'FACE_MASK_REGIONS')
|
||||
# frame extraction
|
||||
group_frame_extraction = program.add_argument_group('frame extraction')
|
||||
group_frame_extraction.add_argument('--trim-frame-start', help = wording.get('trim_frame_start_help'), dest = 'trim_frame_start', type = int)
|
||||
group_frame_extraction.add_argument('--trim-frame-end', help = wording.get('trim_frame_end_help'), dest = 'trim_frame_end', type = int)
|
||||
group_frame_extraction.add_argument('--temp-frame-format', help = wording.get('temp_frame_format_help'), dest = 'temp_frame_format', default = 'jpg', choices = facefusion.choices.temp_frame_formats)
|
||||
group_frame_extraction.add_argument('--temp-frame-quality', help = wording.get('temp_frame_quality_help'), dest = 'temp_frame_quality', type = int, default = 100, choices = facefusion.choices.temp_frame_quality_range, metavar = create_metavar(facefusion.choices.temp_frame_quality_range))
|
||||
group_frame_extraction.add_argument('--keep-temp', help = wording.get('keep_temp_help'), dest = 'keep_temp', action = 'store_true')
|
||||
group_frame_extraction.add_argument('--trim-frame-start', help = wording.get('trim_frame_start_help'), type = int)
|
||||
group_frame_extraction.add_argument('--trim-frame-end', help = wording.get('trim_frame_end_help'), type = int)
|
||||
group_frame_extraction.add_argument('--temp-frame-format', help = wording.get('temp_frame_format_help'), default = 'jpg', choices = facefusion.choices.temp_frame_formats)
|
||||
group_frame_extraction.add_argument('--temp-frame-quality', help = wording.get('temp_frame_quality_help'), type = int, default = 100, choices = facefusion.choices.temp_frame_quality_range, metavar = create_metavar(facefusion.choices.temp_frame_quality_range))
|
||||
group_frame_extraction.add_argument('--keep-temp', help = wording.get('keep_temp_help'), action = 'store_true')
|
||||
# output creation
|
||||
group_output_creation = program.add_argument_group('output creation')
|
||||
group_output_creation.add_argument('--output-image-quality', help = wording.get('output_image_quality_help'), dest = 'output_image_quality', type = int, default = 80, choices = facefusion.choices.output_image_quality_range, metavar = create_metavar(facefusion.choices.output_image_quality_range))
|
||||
group_output_creation.add_argument('--output-video-encoder', help = wording.get('output_video_encoder_help'), dest = 'output_video_encoder', default = 'libx264', choices = facefusion.choices.output_video_encoders)
|
||||
group_output_creation.add_argument('--output-video-quality', help = wording.get('output_video_quality_help'), dest = 'output_video_quality', type = int, default = 80, choices = facefusion.choices.output_video_quality_range, metavar = create_metavar(facefusion.choices.output_video_quality_range))
|
||||
group_output_creation.add_argument('--keep-fps', help = wording.get('keep_fps_help'), dest = 'keep_fps', action = 'store_true')
|
||||
group_output_creation.add_argument('--skip-audio', help = wording.get('skip_audio_help'), dest = 'skip_audio', action = 'store_true')
|
||||
group_output_creation.add_argument('--output-image-quality', help = wording.get('output_image_quality_help'), type = int, default = 80, choices = facefusion.choices.output_image_quality_range, metavar = create_metavar(facefusion.choices.output_image_quality_range))
|
||||
group_output_creation.add_argument('--output-video-encoder', help = wording.get('output_video_encoder_help'), default = 'libx264', choices = facefusion.choices.output_video_encoders)
|
||||
group_output_creation.add_argument('--output-video-quality', help = wording.get('output_video_quality_help'), type = int, default = 80, choices = facefusion.choices.output_video_quality_range, metavar = create_metavar(facefusion.choices.output_video_quality_range))
|
||||
group_output_creation.add_argument('--keep-fps', help = wording.get('keep_fps_help'), action = 'store_true')
|
||||
group_output_creation.add_argument('--skip-audio', help = wording.get('skip_audio_help'), action = 'store_true')
|
||||
# frame processors
|
||||
available_frame_processors = list_module_names('facefusion/processors/frame/modules')
|
||||
program = ArgumentParser(parents = [ program ], formatter_class = program.formatter_class, add_help = True)
|
||||
group_frame_processors = program.add_argument_group('frame processors')
|
||||
group_frame_processors.add_argument('--frame-processors', help = wording.get('frame_processors_help').format(choices = ', '.join(available_frame_processors)), dest = 'frame_processors', default = [ 'face_swapper' ], nargs = '+')
|
||||
group_frame_processors.add_argument('--frame-processors', help = wording.get('frame_processors_help').format(choices = ', '.join(available_frame_processors)), default = [ 'face_swapper' ], nargs = '+')
|
||||
for frame_processor in available_frame_processors:
|
||||
frame_processor_module = load_frame_processor_module(frame_processor)
|
||||
frame_processor_module.register_args(group_frame_processors)
|
||||
# uis
|
||||
group_uis = program.add_argument_group('uis')
|
||||
group_uis.add_argument('--ui-layouts', help = wording.get('ui_layouts_help').format(choices = ', '.join(list_module_names('facefusion/uis/layouts'))), dest = 'ui_layouts', default = [ 'default' ], nargs = '+')
|
||||
group_uis.add_argument('--ui-layouts', help = wording.get('ui_layouts_help').format(choices = ', '.join(list_module_names('facefusion/uis/layouts'))), default = [ 'default' ], nargs = '+')
|
||||
run(program)
|
||||
|
||||
|
||||
def apply_args(program : ArgumentParser) -> None:
|
||||
args = program.parse_args()
|
||||
# general
|
||||
facefusion.globals.source_path = args.source_path
|
||||
facefusion.globals.source_paths = args.source_paths
|
||||
facefusion.globals.target_path = args.target_path
|
||||
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_path, facefusion.globals.target_path, args.output_path)
|
||||
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_paths, facefusion.globals.target_path, args.output_path)
|
||||
# misc
|
||||
facefusion.globals.skip_download = args.skip_download
|
||||
facefusion.globals.headless = args.headless
|
||||
facefusion.globals.log_level = args.log_level
|
||||
# execution
|
||||
facefusion.globals.execution_providers = decode_execution_providers(args.execution_providers)
|
||||
facefusion.globals.execution_thread_count = args.execution_thread_count
|
||||
@ -116,8 +129,10 @@ def apply_args(program : ArgumentParser) -> None:
|
||||
facefusion.globals.reference_face_distance = args.reference_face_distance
|
||||
facefusion.globals.reference_frame_number = args.reference_frame_number
|
||||
# face mask
|
||||
facefusion.globals.face_mask_types = args.face_mask_types
|
||||
facefusion.globals.face_mask_blur = args.face_mask_blur
|
||||
facefusion.globals.face_mask_padding = normalize_padding(args.face_mask_padding)
|
||||
facefusion.globals.face_mask_regions = args.face_mask_regions
|
||||
# frame extraction
|
||||
facefusion.globals.trim_frame_start = args.trim_frame_start
|
||||
facefusion.globals.trim_frame_end = args.trim_frame_end
|
||||
@ -142,8 +157,9 @@ def apply_args(program : ArgumentParser) -> None:
|
||||
|
||||
def run(program : ArgumentParser) -> None:
|
||||
apply_args(program)
|
||||
logger.init(facefusion.globals.log_level)
|
||||
limit_resources()
|
||||
if not pre_check() or not content_analyser.pre_check() or not face_analyser.pre_check():
|
||||
if not pre_check() or not content_analyser.pre_check() or not face_analyser.pre_check() or not face_masker.pre_check():
|
||||
return
|
||||
for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
|
||||
if not frame_processor_module.pre_check():
|
||||
@ -172,25 +188,27 @@ def limit_resources() -> None:
|
||||
memory = facefusion.globals.max_memory * 1024 ** 6
|
||||
if platform.system().lower() == 'windows':
|
||||
import ctypes
|
||||
|
||||
kernel32 = ctypes.windll.kernel32 # type: ignore[attr-defined]
|
||||
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
|
||||
else:
|
||||
import resource
|
||||
|
||||
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
if sys.version_info < (3, 9):
|
||||
update_status(wording.get('python_not_supported').format(version = '3.9'))
|
||||
logger.error(wording.get('python_not_supported').format(version = '3.9'), __name__.upper())
|
||||
return False
|
||||
if not shutil.which('ffmpeg'):
|
||||
update_status(wording.get('ffmpeg_not_installed'))
|
||||
logger.error(wording.get('ffmpeg_not_installed'), __name__.upper())
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def conditional_process() -> None:
|
||||
conditional_set_face_reference()
|
||||
conditional_append_reference_faces()
|
||||
for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
|
||||
if not frame_processor_module.pre_process('output'):
|
||||
return
|
||||
@ -200,14 +218,21 @@ def conditional_process() -> None:
|
||||
process_video()
|
||||
|
||||
|
||||
def conditional_set_face_reference() -> None:
|
||||
if 'reference' in facefusion.globals.face_selector_mode and not get_face_reference():
|
||||
def conditional_append_reference_faces() -> None:
|
||||
if 'reference' in facefusion.globals.face_selector_mode and not get_reference_faces():
|
||||
source_frames = read_static_images(facefusion.globals.source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
if is_video(facefusion.globals.target_path):
|
||||
reference_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
|
||||
else:
|
||||
reference_frame = read_image(facefusion.globals.target_path)
|
||||
reference_face = get_one_face(reference_frame, facefusion.globals.reference_face_position)
|
||||
set_face_reference(reference_face)
|
||||
append_reference_face('origin', reference_face)
|
||||
if source_face and reference_face:
|
||||
for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
|
||||
reference_frame = frame_processor_module.get_reference_frame(source_face, reference_face, reference_frame)
|
||||
reference_face = get_one_face(reference_frame, facefusion.globals.reference_face_position)
|
||||
append_reference_face(frame_processor_module.__name__, reference_face)
|
||||
|
||||
|
||||
def process_image() -> None:
|
||||
@ -216,18 +241,18 @@ def process_image() -> None:
|
||||
shutil.copy2(facefusion.globals.target_path, facefusion.globals.output_path)
|
||||
# process frame
|
||||
for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
|
||||
update_status(wording.get('processing'), frame_processor_module.NAME)
|
||||
frame_processor_module.process_image(facefusion.globals.source_path, facefusion.globals.output_path, facefusion.globals.output_path)
|
||||
logger.info(wording.get('processing'), frame_processor_module.NAME)
|
||||
frame_processor_module.process_image(facefusion.globals.source_paths, facefusion.globals.output_path, facefusion.globals.output_path)
|
||||
frame_processor_module.post_process()
|
||||
# compress image
|
||||
update_status(wording.get('compressing_image'))
|
||||
logger.info(wording.get('compressing_image'), __name__.upper())
|
||||
if not compress_image(facefusion.globals.output_path):
|
||||
update_status(wording.get('compressing_image_failed'))
|
||||
logger.error(wording.get('compressing_image_failed'), __name__.upper())
|
||||
# validate image
|
||||
if is_image(facefusion.globals.output_path):
|
||||
update_status(wording.get('processing_image_succeed'))
|
||||
logger.info(wording.get('processing_image_succeed'), __name__.upper())
|
||||
else:
|
||||
update_status(wording.get('processing_image_failed'))
|
||||
logger.error(wording.get('processing_image_failed'), __name__.upper())
|
||||
|
||||
|
||||
def process_video() -> None:
|
||||
@ -235,40 +260,40 @@ def process_video() -> None:
|
||||
return
|
||||
fps = detect_fps(facefusion.globals.target_path) if facefusion.globals.keep_fps else 25.0
|
||||
# create temp
|
||||
update_status(wording.get('creating_temp'))
|
||||
logger.info(wording.get('creating_temp'), __name__.upper())
|
||||
create_temp(facefusion.globals.target_path)
|
||||
# extract frames
|
||||
update_status(wording.get('extracting_frames_fps').format(fps = fps))
|
||||
logger.info(wording.get('extracting_frames_fps').format(fps = fps), __name__.upper())
|
||||
extract_frames(facefusion.globals.target_path, fps)
|
||||
# process frame
|
||||
temp_frame_paths = get_temp_frame_paths(facefusion.globals.target_path)
|
||||
if temp_frame_paths:
|
||||
for frame_processor_module in get_frame_processors_modules(facefusion.globals.frame_processors):
|
||||
update_status(wording.get('processing'), frame_processor_module.NAME)
|
||||
frame_processor_module.process_video(facefusion.globals.source_path, temp_frame_paths)
|
||||
logger.info(wording.get('processing'), frame_processor_module.NAME)
|
||||
frame_processor_module.process_video(facefusion.globals.source_paths, temp_frame_paths)
|
||||
frame_processor_module.post_process()
|
||||
else:
|
||||
update_status(wording.get('temp_frames_not_found'))
|
||||
logger.error(wording.get('temp_frames_not_found'), __name__.upper())
|
||||
return
|
||||
# merge video
|
||||
update_status(wording.get('merging_video_fps').format(fps = fps))
|
||||
logger.info(wording.get('merging_video_fps').format(fps = fps), __name__.upper())
|
||||
if not merge_video(facefusion.globals.target_path, fps):
|
||||
update_status(wording.get('merging_video_failed'))
|
||||
logger.error(wording.get('merging_video_failed'), __name__.upper())
|
||||
return
|
||||
# handle audio
|
||||
if facefusion.globals.skip_audio:
|
||||
update_status(wording.get('skipping_audio'))
|
||||
logger.info(wording.get('skipping_audio'), __name__.upper())
|
||||
move_temp(facefusion.globals.target_path, facefusion.globals.output_path)
|
||||
else:
|
||||
update_status(wording.get('restoring_audio'))
|
||||
logger.info(wording.get('restoring_audio'), __name__.upper())
|
||||
if not restore_audio(facefusion.globals.target_path, facefusion.globals.output_path):
|
||||
update_status(wording.get('restoring_audio_failed'))
|
||||
logger.warn(wording.get('restoring_audio_skipped'), __name__.upper())
|
||||
move_temp(facefusion.globals.target_path, facefusion.globals.output_path)
|
||||
# clear temp
|
||||
update_status(wording.get('clearing_temp'))
|
||||
logger.info(wording.get('clearing_temp'), __name__.upper())
|
||||
clear_temp(facefusion.globals.target_path)
|
||||
# validate video
|
||||
if is_video(facefusion.globals.output_path):
|
||||
update_status(wording.get('processing_video_succeed'))
|
||||
logger.info(wording.get('processing_video_succeed'), __name__.upper())
|
||||
else:
|
||||
update_status(wording.get('processing_video_failed'))
|
||||
logger.error(wording.get('processing_video_failed'), __name__.upper())
|
||||
|
44
facefusion/download.py
Normal file
44
facefusion/download.py
Normal file
@ -0,0 +1,44 @@
|
||||
import os
|
||||
import subprocess
|
||||
import urllib.request
|
||||
from typing import List
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import lru_cache
|
||||
from tqdm import tqdm
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.filesystem import is_file
|
||||
|
||||
|
||||
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
|
||||
with ThreadPoolExecutor() as executor:
|
||||
for url in urls:
|
||||
executor.submit(get_download_size, url)
|
||||
for url in urls:
|
||||
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
|
||||
initial = os.path.getsize(download_file_path) if is_file(download_file_path) else 0
|
||||
total = get_download_size(url)
|
||||
if initial < total:
|
||||
with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
|
||||
subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
|
||||
current = initial
|
||||
while current < total:
|
||||
if is_file(download_file_path):
|
||||
current = os.path.getsize(download_file_path)
|
||||
progress.update(current - progress.n)
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def get_download_size(url : str) -> int:
|
||||
try:
|
||||
response = urllib.request.urlopen(url, timeout = 10)
|
||||
return int(response.getheader('Content-Length'))
|
||||
except (OSError, ValueError):
|
||||
return 0
|
||||
|
||||
|
||||
def is_download_done(url : str, file_path : str) -> bool:
|
||||
if is_file(file_path):
|
||||
return get_download_size(url) == os.path.getsize(file_path)
|
||||
return False
|
22
facefusion/execution_helper.py
Normal file
22
facefusion/execution_helper.py
Normal file
@ -0,0 +1,22 @@
|
||||
from typing import List
|
||||
import onnxruntime
|
||||
|
||||
|
||||
def encode_execution_providers(execution_providers : List[str]) -> List[str]:
|
||||
return [ execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers ]
|
||||
|
||||
|
||||
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
|
||||
available_execution_providers = onnxruntime.get_available_providers()
|
||||
encoded_execution_providers = encode_execution_providers(available_execution_providers)
|
||||
return [ execution_provider for execution_provider, encoded_execution_provider in zip(available_execution_providers, encoded_execution_providers) if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers) ]
|
||||
|
||||
|
||||
def map_device(execution_providers : List[str]) -> str:
|
||||
if 'CoreMLExecutionProvider' in execution_providers:
|
||||
return 'mps'
|
||||
if 'CUDAExecutionProvider' in execution_providers or 'ROCMExecutionProvider' in execution_providers :
|
||||
return 'cuda'
|
||||
if 'OpenVINOExecutionProvider' in execution_providers:
|
||||
return 'mkl'
|
||||
return 'cpu'
|
@ -1,20 +1,21 @@
|
||||
from typing import Any, Optional, List, Dict, Tuple
|
||||
from typing import Any, Optional, List, Tuple
|
||||
import threading
|
||||
import cv2
|
||||
import numpy
|
||||
import onnxruntime
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion.face_cache import get_faces_cache, set_faces_cache
|
||||
from facefusion.download import conditional_download
|
||||
from facefusion.face_store import get_static_faces, set_static_faces
|
||||
from facefusion.face_helper import warp_face, create_static_anchors, distance_to_kps, distance_to_bbox, apply_nms
|
||||
from facefusion.typing import Frame, Face, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelValue, Bbox, Kps, Score, Embedding
|
||||
from facefusion.utilities import resolve_relative_path, conditional_download
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.typing import Frame, Face, FaceSet, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelSet, Bbox, Kps, Score, Embedding
|
||||
from facefusion.vision import resize_frame_dimension
|
||||
|
||||
FACE_ANALYSER = None
|
||||
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
|
||||
THREAD_LOCK : threading.Lock = threading.Lock()
|
||||
MODELS : Dict[str, ModelValue] =\
|
||||
MODELS : ModelSet =\
|
||||
{
|
||||
'face_detector_retinaface':
|
||||
{
|
||||
@ -174,9 +175,13 @@ def detect_with_yunet(temp_frame : Frame, temp_frame_height : int, temp_frame_wi
|
||||
return bbox_list, kps_list, score_list
|
||||
|
||||
|
||||
def create_faces(frame : Frame, bbox_list : List[Bbox], kps_list : List[Kps], score_list : List[Score]) -> List[Face] :
|
||||
faces : List[Face] = []
|
||||
def create_faces(frame : Frame, bbox_list : List[Bbox], kps_list : List[Kps], score_list : List[Score]) -> List[Face]:
|
||||
faces = []
|
||||
if facefusion.globals.face_detector_score > 0:
|
||||
sort_indices = numpy.argsort(-numpy.array(score_list))
|
||||
bbox_list = [ bbox_list[index] for index in sort_indices ]
|
||||
kps_list = [ kps_list[index] for index in sort_indices ]
|
||||
score_list = [ score_list[index] for index in sort_indices ]
|
||||
keep_indices = apply_nms(bbox_list, 0.4)
|
||||
for index in keep_indices:
|
||||
bbox = bbox_list[index]
|
||||
@ -198,7 +203,7 @@ def create_faces(frame : Frame, bbox_list : List[Bbox], kps_list : List[Kps], sc
|
||||
|
||||
def calc_embedding(temp_frame : Frame, kps : Kps) -> Tuple[Embedding, Embedding]:
|
||||
face_recognizer = get_face_analyser().get('face_recognizer')
|
||||
crop_frame, matrix = warp_face(temp_frame, kps, 'arcface_v2', (112, 112))
|
||||
crop_frame, matrix = warp_face(temp_frame, kps, 'arcface_112_v2', (112, 112))
|
||||
crop_frame = crop_frame.astype(numpy.float32) / 127.5 - 1
|
||||
crop_frame = crop_frame[:, :, ::-1].transpose(2, 0, 1)
|
||||
crop_frame = numpy.expand_dims(crop_frame, axis = 0)
|
||||
@ -213,7 +218,7 @@ def calc_embedding(temp_frame : Frame, kps : Kps) -> Tuple[Embedding, Embedding]
|
||||
|
||||
def detect_gender_age(frame : Frame, kps : Kps) -> Tuple[int, int]:
|
||||
gender_age = get_face_analyser().get('gender_age')
|
||||
crop_frame, affine_matrix = warp_face(frame, kps, 'arcface_v2', (96, 96))
|
||||
crop_frame, affine_matrix = warp_face(frame, kps, 'arcface_112_v2', (96, 96))
|
||||
crop_frame = numpy.expand_dims(crop_frame, axis = 0).transpose(0, 3, 1, 2).astype(numpy.float32)
|
||||
prediction = gender_age.run(None,
|
||||
{
|
||||
@ -234,14 +239,38 @@ def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]:
|
||||
return None
|
||||
|
||||
|
||||
def get_average_face(frames : List[Frame], position : int = 0) -> Optional[Face]:
|
||||
average_face = None
|
||||
faces = []
|
||||
embedding_list = []
|
||||
normed_embedding_list = []
|
||||
for frame in frames:
|
||||
face = get_one_face(frame, position)
|
||||
if face:
|
||||
faces.append(face)
|
||||
embedding_list.append(face.embedding)
|
||||
normed_embedding_list.append(face.normed_embedding)
|
||||
if faces:
|
||||
average_face = Face(
|
||||
bbox = faces[0].bbox,
|
||||
kps = faces[0].kps,
|
||||
score = faces[0].score,
|
||||
embedding = numpy.mean(embedding_list, axis = 0),
|
||||
normed_embedding = numpy.mean(normed_embedding_list, axis = 0),
|
||||
gender = faces[0].gender,
|
||||
age = faces[0].age
|
||||
)
|
||||
return average_face
|
||||
|
||||
|
||||
def get_many_faces(frame : Frame) -> List[Face]:
|
||||
try:
|
||||
faces_cache = get_faces_cache(frame)
|
||||
faces_cache = get_static_faces(frame)
|
||||
if faces_cache:
|
||||
faces = faces_cache
|
||||
else:
|
||||
faces = extract_faces(frame)
|
||||
set_faces_cache(frame, faces)
|
||||
set_static_faces(frame, faces)
|
||||
if facefusion.globals.face_analyser_order:
|
||||
faces = sort_by_order(faces, facefusion.globals.face_analyser_order)
|
||||
if facefusion.globals.face_analyser_age:
|
||||
@ -253,18 +282,27 @@ def get_many_faces(frame : Frame) -> List[Face]:
|
||||
return []
|
||||
|
||||
|
||||
def find_similar_faces(frame : Frame, reference_face : Face, face_distance : float) -> List[Face]:
|
||||
def find_similar_faces(frame : Frame, reference_faces : FaceSet, face_distance : float) -> List[Face]:
|
||||
similar_faces : List[Face] = []
|
||||
many_faces = get_many_faces(frame)
|
||||
similar_faces = []
|
||||
if many_faces:
|
||||
for face in many_faces:
|
||||
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
|
||||
current_face_distance = 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding)
|
||||
if current_face_distance < face_distance:
|
||||
similar_faces.append(face)
|
||||
|
||||
if reference_faces:
|
||||
for reference_set in reference_faces:
|
||||
if not similar_faces:
|
||||
for reference_face in reference_faces[reference_set]:
|
||||
for face in many_faces:
|
||||
if compare_faces(face, reference_face, face_distance):
|
||||
similar_faces.append(face)
|
||||
return similar_faces
|
||||
|
||||
|
||||
def compare_faces(face : Face, reference_face : Face, face_distance : float) -> bool:
|
||||
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'):
|
||||
current_face_distance = 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding)
|
||||
return current_face_distance < face_distance
|
||||
return False
|
||||
|
||||
|
||||
def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]:
|
||||
if order == 'left-right':
|
||||
return sorted(faces, key = lambda face: face.bbox[0])
|
||||
|
@ -1,29 +0,0 @@
|
||||
from typing import Optional, List, Dict
|
||||
import hashlib
|
||||
|
||||
from facefusion.typing import Frame, Face
|
||||
|
||||
FACES_CACHE : Dict[str, List[Face]] = {}
|
||||
|
||||
|
||||
def get_faces_cache(frame : Frame) -> Optional[List[Face]]:
|
||||
frame_hash = create_frame_hash(frame)
|
||||
if frame_hash in FACES_CACHE:
|
||||
return FACES_CACHE[frame_hash]
|
||||
return None
|
||||
|
||||
|
||||
def set_faces_cache(frame : Frame, faces : List[Face]) -> None:
|
||||
frame_hash = create_frame_hash(frame)
|
||||
if frame_hash:
|
||||
FACES_CACHE[frame_hash] = faces
|
||||
|
||||
|
||||
def clear_faces_cache() -> None:
|
||||
global FACES_CACHE
|
||||
|
||||
FACES_CACHE = {}
|
||||
|
||||
|
||||
def create_frame_hash(frame : Frame) -> Optional[str]:
|
||||
return hashlib.sha1(frame.tobytes()).hexdigest() if frame.any() else None
|
@ -1,14 +1,14 @@
|
||||
from typing import Any, Dict, Tuple, List
|
||||
from functools import lru_cache
|
||||
from cv2.typing import Size
|
||||
from functools import lru_cache
|
||||
import cv2
|
||||
import numpy
|
||||
|
||||
from facefusion.typing import Bbox, Kps, Frame, Matrix, Template, Padding
|
||||
from facefusion.typing import Bbox, Kps, Frame, Mask, Matrix, Template
|
||||
|
||||
TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
|
||||
{
|
||||
'arcface_v1': numpy.array(
|
||||
'arcface_112_v1': numpy.array(
|
||||
[
|
||||
[ 39.7300, 51.1380 ],
|
||||
[ 72.2700, 51.1380 ],
|
||||
@ -16,7 +16,7 @@ TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
|
||||
[ 42.4630, 87.0100 ],
|
||||
[ 69.5370, 87.0100 ]
|
||||
]),
|
||||
'arcface_v2': numpy.array(
|
||||
'arcface_112_v2': numpy.array(
|
||||
[
|
||||
[ 38.2946, 51.6963 ],
|
||||
[ 73.5318, 51.5014 ],
|
||||
@ -24,7 +24,15 @@ TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
|
||||
[ 41.5493, 92.3655 ],
|
||||
[ 70.7299, 92.2041 ]
|
||||
]),
|
||||
'ffhq': numpy.array(
|
||||
'arcface_128_v2': numpy.array(
|
||||
[
|
||||
[ 46.2946, 51.6963 ],
|
||||
[ 81.5318, 51.5014 ],
|
||||
[ 64.0252, 71.7366 ],
|
||||
[ 49.5493, 92.3655 ],
|
||||
[ 78.7299, 92.2041 ]
|
||||
]),
|
||||
'ffhq_512': numpy.array(
|
||||
[
|
||||
[ 192.98138, 239.94708 ],
|
||||
[ 318.90277, 240.1936 ],
|
||||
@ -37,39 +45,23 @@ TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
|
||||
|
||||
def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]:
|
||||
normed_template = TEMPLATES.get(template) * size[1] / size[0]
|
||||
affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.LMEDS)[0]
|
||||
affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
|
||||
crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE)
|
||||
return crop_frame, affine_matrix
|
||||
|
||||
|
||||
def paste_back(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame:
|
||||
def paste_back(temp_frame : Frame, crop_frame: Frame, crop_mask : Mask, affine_matrix : Matrix) -> Frame:
|
||||
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
|
||||
temp_frame_size = temp_frame.shape[:2][::-1]
|
||||
mask_size = tuple(crop_frame.shape[:2])
|
||||
mask_frame = create_static_mask_frame(mask_size, face_mask_blur, face_mask_padding)
|
||||
inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1)
|
||||
inverse_crop_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_frame_size).clip(0, 1)
|
||||
inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE)
|
||||
paste_frame = temp_frame.copy()
|
||||
paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0]
|
||||
paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1]
|
||||
paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2]
|
||||
paste_frame[:, :, 0] = inverse_crop_mask * inverse_crop_frame[:, :, 0] + (1 - inverse_crop_mask) * temp_frame[:, :, 0]
|
||||
paste_frame[:, :, 1] = inverse_crop_mask * inverse_crop_frame[:, :, 1] + (1 - inverse_crop_mask) * temp_frame[:, :, 1]
|
||||
paste_frame[:, :, 2] = inverse_crop_mask * inverse_crop_frame[:, :, 2] + (1 - inverse_crop_mask) * temp_frame[:, :, 2]
|
||||
return paste_frame
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_mask_frame(mask_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Frame:
|
||||
mask_frame = numpy.ones(mask_size, numpy.float32)
|
||||
blur_amount = int(mask_size[0] * 0.5 * face_mask_blur)
|
||||
blur_area = max(blur_amount // 2, 1)
|
||||
mask_frame[:max(blur_area, int(mask_size[1] * face_mask_padding[0] / 100)), :] = 0
|
||||
mask_frame[-max(blur_area, int(mask_size[1] * face_mask_padding[2] / 100)):, :] = 0
|
||||
mask_frame[:, :max(blur_area, int(mask_size[0] * face_mask_padding[3] / 100))] = 0
|
||||
mask_frame[:, -max(blur_area, int(mask_size[0] * face_mask_padding[1] / 100)):] = 0
|
||||
if blur_amount > 0:
|
||||
mask_frame = cv2.GaussianBlur(mask_frame, (0, 0), blur_amount * 0.25)
|
||||
return mask_frame
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
|
||||
y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
|
||||
|
128
facefusion/face_masker.py
Executable file
128
facefusion/face_masker.py
Executable file
@ -0,0 +1,128 @@
|
||||
from typing import Any, Dict, List
|
||||
from cv2.typing import Size
|
||||
from functools import lru_cache
|
||||
import threading
|
||||
import cv2
|
||||
import numpy
|
||||
import onnxruntime
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion.typing import Frame, Mask, Padding, FaceMaskRegion, ModelSet
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.download import conditional_download
|
||||
|
||||
FACE_OCCLUDER = None
|
||||
FACE_PARSER = None
|
||||
THREAD_LOCK : threading.Lock = threading.Lock()
|
||||
MODELS : ModelSet =\
|
||||
{
|
||||
'face_occluder':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_occluder.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/face_occluder.onnx')
|
||||
},
|
||||
'face_parser':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/face_parser.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/face_parser.onnx')
|
||||
}
|
||||
}
|
||||
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
|
||||
{
|
||||
'skin': 1,
|
||||
'left-eyebrow': 2,
|
||||
'right-eyebrow': 3,
|
||||
'left-eye': 4,
|
||||
'right-eye': 5,
|
||||
'eye-glasses': 6,
|
||||
'nose': 10,
|
||||
'mouth': 11,
|
||||
'upper-lip': 12,
|
||||
'lower-lip': 13
|
||||
}
|
||||
|
||||
|
||||
def get_face_occluder() -> Any:
|
||||
global FACE_OCCLUDER
|
||||
|
||||
with THREAD_LOCK:
|
||||
if FACE_OCCLUDER is None:
|
||||
model_path = MODELS.get('face_occluder').get('path')
|
||||
FACE_OCCLUDER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
|
||||
return FACE_OCCLUDER
|
||||
|
||||
|
||||
def get_face_parser() -> Any:
|
||||
global FACE_PARSER
|
||||
|
||||
with THREAD_LOCK:
|
||||
if FACE_PARSER is None:
|
||||
model_path = MODELS.get('face_parser').get('path')
|
||||
FACE_PARSER = onnxruntime.InferenceSession(model_path, providers = facefusion.globals.execution_providers)
|
||||
return FACE_PARSER
|
||||
|
||||
|
||||
def clear_face_occluder() -> None:
|
||||
global FACE_OCCLUDER
|
||||
|
||||
FACE_OCCLUDER = None
|
||||
|
||||
|
||||
def clear_face_parser() -> None:
|
||||
global FACE_PARSER
|
||||
|
||||
FACE_PARSER = None
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
if not facefusion.globals.skip_download:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_urls =\
|
||||
[
|
||||
MODELS.get('face_occluder').get('url'),
|
||||
MODELS.get('face_parser').get('url'),
|
||||
]
|
||||
conditional_download(download_directory_path, model_urls)
|
||||
return True
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
|
||||
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
|
||||
blur_area = max(blur_amount // 2, 1)
|
||||
box_mask = numpy.ones(crop_size, numpy.float32)
|
||||
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
|
||||
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
|
||||
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
|
||||
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
|
||||
if blur_amount > 0:
|
||||
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
|
||||
return box_mask
|
||||
|
||||
|
||||
def create_occlusion_mask(crop_frame : Frame) -> Mask:
|
||||
face_occluder = get_face_occluder()
|
||||
prepare_frame = cv2.resize(crop_frame, face_occluder.get_inputs()[0].shape[1:3][::-1])
|
||||
prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32) / 255
|
||||
prepare_frame = prepare_frame.transpose(0, 1, 2, 3)
|
||||
occlusion_mask = face_occluder.run(None,
|
||||
{
|
||||
face_occluder.get_inputs()[0].name: prepare_frame
|
||||
})[0][0]
|
||||
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
|
||||
occlusion_mask = cv2.resize(occlusion_mask, crop_frame.shape[:2][::-1])
|
||||
return occlusion_mask
|
||||
|
||||
|
||||
def create_region_mask(crop_frame : Frame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
|
||||
face_parser = get_face_parser()
|
||||
prepare_frame = cv2.flip(cv2.resize(crop_frame, (512, 512)), 1)
|
||||
prepare_frame = numpy.expand_dims(prepare_frame, axis = 0).astype(numpy.float32)[:, :, ::-1] / 127.5 - 1
|
||||
prepare_frame = prepare_frame.transpose(0, 3, 1, 2)
|
||||
region_mask = face_parser.run(None,
|
||||
{
|
||||
face_parser.get_inputs()[0].name: prepare_frame
|
||||
})[0][0]
|
||||
region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
|
||||
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_frame.shape[:2][::-1])
|
||||
return region_mask
|
@ -1,21 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
from facefusion.typing import Face
|
||||
|
||||
FACE_REFERENCE = None
|
||||
|
||||
|
||||
def get_face_reference() -> Optional[Face]:
|
||||
return FACE_REFERENCE
|
||||
|
||||
|
||||
def set_face_reference(face : Face) -> None:
|
||||
global FACE_REFERENCE
|
||||
|
||||
FACE_REFERENCE = face
|
||||
|
||||
|
||||
def clear_face_reference() -> None:
|
||||
global FACE_REFERENCE
|
||||
|
||||
FACE_REFERENCE = None
|
47
facefusion/face_store.py
Normal file
47
facefusion/face_store.py
Normal file
@ -0,0 +1,47 @@
|
||||
from typing import Optional, List
|
||||
import hashlib
|
||||
|
||||
from facefusion.typing import Frame, Face, FaceStore, FaceSet
|
||||
|
||||
FACE_STORE: FaceStore =\
|
||||
{
|
||||
'static_faces': {},
|
||||
'reference_faces': {}
|
||||
}
|
||||
|
||||
|
||||
def get_static_faces(frame : Frame) -> Optional[List[Face]]:
|
||||
frame_hash = create_frame_hash(frame)
|
||||
if frame_hash in FACE_STORE['static_faces']:
|
||||
return FACE_STORE['static_faces'][frame_hash]
|
||||
return None
|
||||
|
||||
|
||||
def set_static_faces(frame : Frame, faces : List[Face]) -> None:
|
||||
frame_hash = create_frame_hash(frame)
|
||||
if frame_hash:
|
||||
FACE_STORE['static_faces'][frame_hash] = faces
|
||||
|
||||
|
||||
def clear_static_faces() -> None:
|
||||
FACE_STORE['static_faces'] = {}
|
||||
|
||||
|
||||
def create_frame_hash(frame: Frame) -> Optional[str]:
|
||||
return hashlib.sha1(frame.tobytes()).hexdigest() if frame.any() else None
|
||||
|
||||
|
||||
def get_reference_faces() -> Optional[FaceSet]:
|
||||
if FACE_STORE['reference_faces']:
|
||||
return FACE_STORE['reference_faces']
|
||||
return None
|
||||
|
||||
|
||||
def append_reference_face(name : str, face : Face) -> None:
|
||||
if name not in FACE_STORE['reference_faces']:
|
||||
FACE_STORE['reference_faces'][name] = []
|
||||
FACE_STORE['reference_faces'][name].append(face)
|
||||
|
||||
|
||||
def clear_reference_faces() -> None:
|
||||
FACE_STORE['reference_faces'] = {}
|
81
facefusion/ffmpeg.py
Normal file
81
facefusion/ffmpeg.py
Normal file
@ -0,0 +1,81 @@
|
||||
from typing import List
|
||||
import subprocess
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import logger
|
||||
from facefusion.filesystem import get_temp_frames_pattern, get_temp_output_video_path
|
||||
from facefusion.vision import detect_fps
|
||||
|
||||
|
||||
def run_ffmpeg(args : List[str]) -> bool:
|
||||
commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
|
||||
commands.extend(args)
|
||||
try:
|
||||
subprocess.run(commands, stderr = subprocess.PIPE, check = True)
|
||||
return True
|
||||
except subprocess.CalledProcessError as exception:
|
||||
logger.debug(exception.stderr.decode().strip(), __name__.upper())
|
||||
return False
|
||||
|
||||
|
||||
def open_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
|
||||
commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
|
||||
commands.extend(args)
|
||||
return subprocess.Popen(commands, stdin = subprocess.PIPE)
|
||||
|
||||
|
||||
def extract_frames(target_path : str, fps : float) -> bool:
|
||||
temp_frame_compression = round(31 - (facefusion.globals.temp_frame_quality * 0.31))
|
||||
trim_frame_start = facefusion.globals.trim_frame_start
|
||||
trim_frame_end = facefusion.globals.trim_frame_end
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
|
||||
commands = [ '-hwaccel', 'auto', '-i', target_path, '-q:v', str(temp_frame_compression), '-pix_fmt', 'rgb24' ]
|
||||
if trim_frame_start is not None and trim_frame_end is not None:
|
||||
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
|
||||
elif trim_frame_start is not None:
|
||||
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ',fps=' + str(fps) ])
|
||||
elif trim_frame_end is not None:
|
||||
commands.extend([ '-vf', 'trim=end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
|
||||
else:
|
||||
commands.extend([ '-vf', 'fps=' + str(fps) ])
|
||||
commands.extend([ '-vsync', '0', temp_frames_pattern ])
|
||||
return run_ffmpeg(commands)
|
||||
|
||||
|
||||
def compress_image(output_path : str) -> bool:
|
||||
output_image_compression = round(31 - (facefusion.globals.output_image_quality * 0.31))
|
||||
commands = [ '-hwaccel', 'auto', '-i', output_path, '-q:v', str(output_image_compression), '-y', output_path ]
|
||||
return run_ffmpeg(commands)
|
||||
|
||||
|
||||
def merge_video(target_path : str, fps : float) -> bool:
|
||||
temp_output_video_path = get_temp_output_video_path(target_path)
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
|
||||
commands = [ '-hwaccel', 'auto', '-r', str(fps), '-i', temp_frames_pattern, '-c:v', facefusion.globals.output_video_encoder ]
|
||||
if facefusion.globals.output_video_encoder in [ 'libx264', 'libx265' ]:
|
||||
output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.51))
|
||||
commands.extend([ '-crf', str(output_video_compression) ])
|
||||
if facefusion.globals.output_video_encoder in [ 'libvpx-vp9' ]:
|
||||
output_video_compression = round(63 - (facefusion.globals.output_video_quality * 0.63))
|
||||
commands.extend([ '-crf', str(output_video_compression) ])
|
||||
if facefusion.globals.output_video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
|
||||
output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.51))
|
||||
commands.extend([ '-cq', str(output_video_compression) ])
|
||||
commands.extend([ '-pix_fmt', 'yuv420p', '-colorspace', 'bt709', '-y', temp_output_video_path ])
|
||||
return run_ffmpeg(commands)
|
||||
|
||||
|
||||
def restore_audio(target_path : str, output_path : str) -> bool:
|
||||
fps = detect_fps(target_path)
|
||||
trim_frame_start = facefusion.globals.trim_frame_start
|
||||
trim_frame_end = facefusion.globals.trim_frame_end
|
||||
temp_output_video_path = get_temp_output_video_path(target_path)
|
||||
commands = [ '-hwaccel', 'auto', '-i', temp_output_video_path ]
|
||||
if trim_frame_start is not None:
|
||||
start_time = trim_frame_start / fps
|
||||
commands.extend([ '-ss', str(start_time) ])
|
||||
if trim_frame_end is not None:
|
||||
end_time = trim_frame_end / fps
|
||||
commands.extend([ '-to', str(end_time) ])
|
||||
commands.extend([ '-i', target_path, '-c', 'copy', '-map', '0:v:0', '-map', '1:a:0', '-shortest', '-y', output_path ])
|
||||
return run_ffmpeg(commands)
|
91
facefusion/filesystem.py
Normal file
91
facefusion/filesystem.py
Normal file
@ -0,0 +1,91 @@
|
||||
from typing import List, Optional
|
||||
import glob
|
||||
import os
|
||||
import shutil
|
||||
import tempfile
|
||||
import filetype
|
||||
from pathlib import Path
|
||||
|
||||
import facefusion.globals
|
||||
|
||||
TEMP_DIRECTORY_PATH = os.path.join(tempfile.gettempdir(), 'facefusion')
|
||||
TEMP_OUTPUT_VIDEO_NAME = 'temp.mp4'
|
||||
|
||||
|
||||
def get_temp_frame_paths(target_path : str) -> List[str]:
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '*')
|
||||
return sorted(glob.glob(temp_frames_pattern))
|
||||
|
||||
|
||||
def get_temp_frames_pattern(target_path : str, temp_frame_prefix : str) -> str:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
return os.path.join(temp_directory_path, temp_frame_prefix + '.' + facefusion.globals.temp_frame_format)
|
||||
|
||||
|
||||
def get_temp_directory_path(target_path : str) -> str:
|
||||
target_name, _ = os.path.splitext(os.path.basename(target_path))
|
||||
return os.path.join(TEMP_DIRECTORY_PATH, target_name)
|
||||
|
||||
|
||||
def get_temp_output_video_path(target_path : str) -> str:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
return os.path.join(temp_directory_path, TEMP_OUTPUT_VIDEO_NAME)
|
||||
|
||||
|
||||
def create_temp(target_path : str) -> None:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
Path(temp_directory_path).mkdir(parents = True, exist_ok = True)
|
||||
|
||||
|
||||
def move_temp(target_path : str, output_path : str) -> None:
|
||||
temp_output_video_path = get_temp_output_video_path(target_path)
|
||||
if is_file(temp_output_video_path):
|
||||
if is_file(output_path):
|
||||
os.remove(output_path)
|
||||
shutil.move(temp_output_video_path, output_path)
|
||||
|
||||
|
||||
def clear_temp(target_path : str) -> None:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
parent_directory_path = os.path.dirname(temp_directory_path)
|
||||
if not facefusion.globals.keep_temp and is_directory(temp_directory_path):
|
||||
shutil.rmtree(temp_directory_path)
|
||||
if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
|
||||
os.rmdir(parent_directory_path)
|
||||
|
||||
|
||||
def is_file(file_path : str) -> bool:
|
||||
return bool(file_path and os.path.isfile(file_path))
|
||||
|
||||
|
||||
def is_directory(directory_path : str) -> bool:
|
||||
return bool(directory_path and os.path.isdir(directory_path))
|
||||
|
||||
|
||||
def is_image(image_path : str) -> bool:
|
||||
if is_file(image_path):
|
||||
return filetype.helpers.is_image(image_path)
|
||||
return False
|
||||
|
||||
|
||||
def are_images(image_paths : List[str]) -> bool:
|
||||
if image_paths:
|
||||
return all(is_image(image_path) for image_path in image_paths)
|
||||
return False
|
||||
|
||||
|
||||
def is_video(video_path : str) -> bool:
|
||||
if is_file(video_path):
|
||||
return filetype.helpers.is_video(video_path)
|
||||
return False
|
||||
|
||||
|
||||
def resolve_relative_path(path : str) -> str:
|
||||
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
|
||||
|
||||
|
||||
def list_module_names(path : str) -> Optional[List[str]]:
|
||||
if os.path.exists(path):
|
||||
files = os.listdir(path)
|
||||
return [ Path(file).stem for file in files if not Path(file).stem.startswith(('.', '__')) ]
|
||||
return None
|
@ -1,14 +1,15 @@
|
||||
from typing import List, Optional
|
||||
|
||||
from facefusion.typing import FaceSelectorMode, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, OutputVideoEncoder, FaceDetectorModel, FaceRecognizerModel, TempFrameFormat, Padding
|
||||
from facefusion.typing import LogLevel, FaceSelectorMode, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, FaceMaskType, FaceMaskRegion, OutputVideoEncoder, FaceDetectorModel, FaceRecognizerModel, TempFrameFormat, Padding
|
||||
|
||||
# general
|
||||
source_path : Optional[str] = None
|
||||
source_paths : Optional[List[str]] = None
|
||||
target_path : Optional[str] = None
|
||||
output_path : Optional[str] = None
|
||||
# misc
|
||||
skip_download : Optional[bool] = None
|
||||
headless : Optional[bool] = None
|
||||
log_level : Optional[LogLevel] = None
|
||||
# execution
|
||||
execution_providers : List[str] = []
|
||||
execution_thread_count : Optional[int] = None
|
||||
@ -28,8 +29,10 @@ reference_face_position : Optional[int] = None
|
||||
reference_face_distance : Optional[float] = None
|
||||
reference_frame_number : Optional[int] = None
|
||||
# face mask
|
||||
face_mask_types : Optional[List[FaceMaskType]] = None
|
||||
face_mask_blur : Optional[float] = None
|
||||
face_mask_padding : Optional[Padding] = None
|
||||
face_mask_regions : Optional[List[FaceMaskRegion]] = None
|
||||
# frame extraction
|
||||
trim_frame_start : Optional[int] = None
|
||||
trim_frame_end : Optional[int] = None
|
||||
|
@ -1,4 +1,8 @@
|
||||
from typing import Dict, Tuple
|
||||
import sys
|
||||
import os
|
||||
import platform
|
||||
import tempfile
|
||||
import subprocess
|
||||
from argparse import ArgumentParser, HelpFormatter
|
||||
|
||||
@ -11,32 +15,40 @@ from facefusion import metadata, wording
|
||||
TORCH : Dict[str, str] =\
|
||||
{
|
||||
'default': 'default',
|
||||
'cpu': 'cpu',
|
||||
'cuda': 'cu118',
|
||||
'rocm': 'rocm5.6'
|
||||
'cpu': 'cpu'
|
||||
}
|
||||
ONNXRUNTIMES : Dict[str, Tuple[str, str]] =\
|
||||
{
|
||||
'default': ('onnxruntime', '1.16.3'),
|
||||
'cuda': ('onnxruntime-gpu', '1.16.3'),
|
||||
'coreml-legacy': ('onnxruntime-coreml', '1.13.1'),
|
||||
'coreml-silicon': ('onnxruntime-silicon', '1.16.0'),
|
||||
'directml': ('onnxruntime-directml', '1.16.3'),
|
||||
'openvino': ('onnxruntime-openvino', '1.16.0')
|
||||
'default': ('onnxruntime', '1.16.3')
|
||||
}
|
||||
if platform.system().lower() == 'linux' or platform.system().lower() == 'windows':
|
||||
TORCH['cuda'] = 'cu118'
|
||||
ONNXRUNTIMES['cuda'] = ('onnxruntime-gpu', '1.16.3')
|
||||
ONNXRUNTIMES['openvino'] = ('onnxruntime-openvino', '1.16.0')
|
||||
if platform.system().lower() == 'linux':
|
||||
TORCH['rocm'] = 'rocm5.6'
|
||||
ONNXRUNTIMES['directml'] = ('onnxruntime-directml', '1.16.3')
|
||||
ONNXRUNTIMES['rocm'] = ('onnxruntime-rocm', '1.16.3')
|
||||
if platform.system().lower() == 'darwin':
|
||||
ONNXRUNTIMES['coreml-legacy'] = ('onnxruntime-coreml', '1.13.1')
|
||||
ONNXRUNTIMES['coreml-silicon'] = ('onnxruntime-silicon', '1.16.0')
|
||||
|
||||
|
||||
def cli() -> None:
|
||||
program = ArgumentParser(formatter_class = lambda prog: HelpFormatter(prog, max_help_position = 120))
|
||||
program.add_argument('--torch', help = wording.get('install_dependency_help').format(dependency = 'torch'), dest = 'torch', choices = TORCH.keys())
|
||||
program.add_argument('--onnxruntime', help = wording.get('install_dependency_help').format(dependency = 'onnxruntime'), dest = 'onnxruntime', choices = ONNXRUNTIMES.keys())
|
||||
program.add_argument('--torch', help = wording.get('install_dependency_help').format(dependency = 'torch'), choices = TORCH.keys())
|
||||
program.add_argument('--onnxruntime', help = wording.get('install_dependency_help').format(dependency = 'onnxruntime'), choices = ONNXRUNTIMES.keys())
|
||||
program.add_argument('--skip-venv', help = wording.get('skip_venv_help'), action = 'store_true')
|
||||
program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
|
||||
run(program)
|
||||
|
||||
|
||||
def run(program : ArgumentParser) -> None:
|
||||
args = program.parse_args()
|
||||
python_id = 'cp' + str(sys.version_info.major) + str(sys.version_info.minor)
|
||||
|
||||
if not args.skip_venv:
|
||||
os.environ['PIP_REQUIRE_VIRTUALENV'] = '1'
|
||||
if args.torch and args.onnxruntime:
|
||||
answers =\
|
||||
{
|
||||
@ -54,10 +66,19 @@ def run(program : ArgumentParser) -> None:
|
||||
torch_wheel = TORCH[torch]
|
||||
onnxruntime = answers['onnxruntime']
|
||||
onnxruntime_name, onnxruntime_version = ONNXRUNTIMES[onnxruntime]
|
||||
subprocess.call([ 'pip', 'uninstall', 'torch', '-y' ])
|
||||
subprocess.call([ 'pip', 'uninstall', 'torch', '-y', '-q' ])
|
||||
if torch_wheel == 'default':
|
||||
subprocess.call([ 'pip', 'install', '-r', 'requirements.txt' ])
|
||||
else:
|
||||
subprocess.call([ 'pip', 'install', '-r', 'requirements.txt', '--extra-index-url', 'https://download.pytorch.org/whl/' + torch_wheel ])
|
||||
subprocess.call([ 'pip', 'uninstall', 'onnxruntime', onnxruntime_name, '-y' ])
|
||||
subprocess.call([ 'pip', 'install', onnxruntime_name + '==' + onnxruntime_version ])
|
||||
if onnxruntime != 'rocm':
|
||||
subprocess.call([ 'pip', 'uninstall', 'onnxruntime', onnxruntime_name, '-y', '-q' ])
|
||||
subprocess.call([ 'pip', 'install', onnxruntime_name + '==' + onnxruntime_version ])
|
||||
elif python_id in [ 'cp39', 'cp310', 'cp311' ]:
|
||||
wheel_name = 'onnxruntime_training-' + onnxruntime_version + '+rocm56-' + python_id + '-' + python_id + '-manylinux_2_17_x86_64.manylinux2014_x86_64.whl'
|
||||
wheel_path = os.path.join(tempfile.gettempdir(), wheel_name)
|
||||
wheel_url = 'https://download.onnxruntime.ai/' + wheel_name
|
||||
subprocess.call([ 'curl', '--silent', '--location', '--continue-at', '-', '--output', wheel_path, wheel_url ])
|
||||
subprocess.call([ 'pip', 'uninstall', wheel_path, '-y', '-q' ])
|
||||
subprocess.call([ 'pip', 'install', wheel_path ])
|
||||
os.remove(wheel_path)
|
||||
|
39
facefusion/logger.py
Normal file
39
facefusion/logger.py
Normal file
@ -0,0 +1,39 @@
|
||||
from typing import Dict
|
||||
from logging import basicConfig, getLogger, Logger, DEBUG, INFO, WARNING, ERROR
|
||||
|
||||
from facefusion.typing import LogLevel
|
||||
|
||||
|
||||
def init(log_level : LogLevel) -> None:
|
||||
basicConfig(format = None)
|
||||
get_package_logger().setLevel(get_log_levels()[log_level])
|
||||
|
||||
|
||||
def get_package_logger() -> Logger:
|
||||
return getLogger('facefusion')
|
||||
|
||||
|
||||
def debug(message : str, scope : str) -> None:
|
||||
get_package_logger().debug('[' + scope + '] ' + message)
|
||||
|
||||
|
||||
def info(message : str, scope : str) -> None:
|
||||
get_package_logger().info('[' + scope + '] ' + message)
|
||||
|
||||
|
||||
def warn(message : str, scope : str) -> None:
|
||||
get_package_logger().warning('[' + scope + '] ' + message)
|
||||
|
||||
|
||||
def error(message : str, scope : str) -> None:
|
||||
get_package_logger().error('[' + scope + '] ' + message)
|
||||
|
||||
|
||||
def get_log_levels() -> Dict[LogLevel, int]:
|
||||
return\
|
||||
{
|
||||
'error': ERROR,
|
||||
'warn': WARNING,
|
||||
'info': INFO,
|
||||
'debug': DEBUG
|
||||
}
|
@ -2,7 +2,7 @@ METADATA =\
|
||||
{
|
||||
'name': 'FaceFusion',
|
||||
'description': 'Next generation face swapper and enhancer',
|
||||
'version': '2.0.0',
|
||||
'version': '2.1.0',
|
||||
'license': 'MIT',
|
||||
'author': 'Henry Ruhs',
|
||||
'url': 'https://facefusion.io'
|
||||
|
34
facefusion/normalizer.py
Normal file
34
facefusion/normalizer.py
Normal file
@ -0,0 +1,34 @@
|
||||
from typing import List, Optional
|
||||
import os
|
||||
|
||||
from facefusion.filesystem import is_file, is_directory
|
||||
from facefusion.typing import Padding
|
||||
|
||||
|
||||
def normalize_output_path(source_paths : List[str], target_path : str, output_path : str) -> Optional[str]:
|
||||
if is_file(target_path) and is_directory(output_path):
|
||||
target_name, target_extension = os.path.splitext(os.path.basename(target_path))
|
||||
if source_paths and is_file(source_paths[0]):
|
||||
source_name, _ = os.path.splitext(os.path.basename(source_paths[0]))
|
||||
return os.path.join(output_path, source_name + '-' + target_name + target_extension)
|
||||
return os.path.join(output_path, target_name + target_extension)
|
||||
if is_file(target_path) and output_path:
|
||||
_, target_extension = os.path.splitext(os.path.basename(target_path))
|
||||
output_name, output_extension = os.path.splitext(os.path.basename(output_path))
|
||||
output_directory_path = os.path.dirname(output_path)
|
||||
if is_directory(output_directory_path) and output_extension:
|
||||
return os.path.join(output_directory_path, output_name + target_extension)
|
||||
return None
|
||||
return output_path
|
||||
|
||||
|
||||
def normalize_padding(padding : Optional[List[int]]) -> Optional[Padding]:
|
||||
if padding and len(padding) == 1:
|
||||
return tuple([ padding[0], padding[0], padding[0], padding[0] ]) # type: ignore[return-value]
|
||||
if padding and len(padding) == 2:
|
||||
return tuple([ padding[0], padding[1], padding[0], padding[1] ]) # type: ignore[return-value]
|
||||
if padding and len(padding) == 3:
|
||||
return tuple([ padding[0], padding[1], padding[2], padding[1] ]) # type: ignore[return-value]
|
||||
if padding and len(padding) == 4:
|
||||
return tuple(padding) # type: ignore[return-value]
|
||||
return None
|
@ -8,8 +8,8 @@ from tqdm import tqdm
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion.typing import Process_Frames
|
||||
from facefusion import wording
|
||||
from facefusion.utilities import encode_execution_providers
|
||||
from facefusion.execution_helper import encode_execution_providers
|
||||
from facefusion import logger, wording
|
||||
|
||||
FRAME_PROCESSORS_MODULES : List[ModuleType] = []
|
||||
FRAME_PROCESSORS_METHODS =\
|
||||
@ -22,6 +22,7 @@ FRAME_PROCESSORS_METHODS =\
|
||||
'apply_args',
|
||||
'pre_check',
|
||||
'pre_process',
|
||||
'get_reference_frame',
|
||||
'process_frame',
|
||||
'process_frames',
|
||||
'process_image',
|
||||
@ -36,7 +37,8 @@ def load_frame_processor_module(frame_processor : str) -> Any:
|
||||
for method_name in FRAME_PROCESSORS_METHODS:
|
||||
if not hasattr(frame_processor_module, method_name):
|
||||
raise NotImplementedError
|
||||
except ModuleNotFoundError:
|
||||
except ModuleNotFoundError as exception:
|
||||
logger.debug(exception.msg, __name__.upper())
|
||||
sys.exit(wording.get('frame_processor_not_loaded').format(frame_processor = frame_processor))
|
||||
except NotImplementedError:
|
||||
sys.exit(wording.get('frame_processor_not_implemented').format(frame_processor = frame_processor))
|
||||
@ -61,8 +63,8 @@ def clear_frame_processors_modules() -> None:
|
||||
FRAME_PROCESSORS_MODULES = []
|
||||
|
||||
|
||||
def multi_process_frames(source_path : str, temp_frame_paths : List[str], process_frames : Process_Frames) -> None:
|
||||
with tqdm(total = len(temp_frame_paths), desc = wording.get('processing'), unit = 'frame', ascii = ' =') as progress:
|
||||
def multi_process_frames(source_paths : List[str], temp_frame_paths : List[str], process_frames : Process_Frames) -> None:
|
||||
with tqdm(total = len(temp_frame_paths), desc = wording.get('processing'), unit = 'frame', ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
|
||||
progress.set_postfix(
|
||||
{
|
||||
'execution_providers': encode_execution_providers(facefusion.globals.execution_providers),
|
||||
@ -75,7 +77,7 @@ def multi_process_frames(source_path : str, temp_frame_paths : List[str], proces
|
||||
queue_per_future = max(len(temp_frame_paths) // facefusion.globals.execution_thread_count * facefusion.globals.execution_queue_count, 1)
|
||||
while not queue_temp_frame_paths.empty():
|
||||
payload_temp_frame_paths = pick_queue(queue_temp_frame_paths, queue_per_future)
|
||||
future = executor.submit(process_frames, source_path, payload_temp_frame_paths, progress.update)
|
||||
future = executor.submit(process_frames, source_paths, payload_temp_frame_paths, progress.update)
|
||||
futures.append(future)
|
||||
for future_done in as_completed(futures):
|
||||
future_done.result()
|
||||
|
@ -6,15 +6,16 @@ import numpy
|
||||
import facefusion.globals
|
||||
import facefusion.processors.frame.core as frame_processors
|
||||
from facefusion import wording
|
||||
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
|
||||
from facefusion.face_reference import get_face_reference
|
||||
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
|
||||
from facefusion.face_store import get_reference_faces
|
||||
from facefusion.content_analyser import clear_content_analyser
|
||||
from facefusion.typing import Face, Frame, Update_Process, ProcessMode
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
from facefusion.face_helper import warp_face, create_static_mask_frame
|
||||
from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode
|
||||
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
|
||||
from facefusion.face_helper import warp_face
|
||||
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
|
||||
from facefusion.processors.frame import globals as frame_processors_globals, choices as frame_processors_choices
|
||||
|
||||
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_DEBUGGER'
|
||||
NAME = __name__.upper()
|
||||
|
||||
|
||||
def get_frame_processor() -> None:
|
||||
@ -34,7 +35,7 @@ def set_options(key : Literal['model'], value : Any) -> None:
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
program.add_argument('--face-debugger-items', help = wording.get('face_debugger_items_help'), dest = 'face_debugger_items', default = [ 'kps', 'face-mask' ], choices = frame_processors_choices.face_debugger_items, nargs = '+')
|
||||
program.add_argument('--face-debugger-items', help = wording.get('face_debugger_items_help').format(choices = ', '.join(frame_processors_choices.face_debugger_items)), default = [ 'kps', 'face-mask' ], choices = frame_processors_choices.face_debugger_items, nargs = '+', metavar = 'FACE_DEBUGGER_ITEMS')
|
||||
|
||||
|
||||
def apply_args(program : ArgumentParser) -> None:
|
||||
@ -54,6 +55,9 @@ def post_process() -> None:
|
||||
clear_frame_processor()
|
||||
clear_face_analyser()
|
||||
clear_content_analyser()
|
||||
clear_face_occluder()
|
||||
clear_face_parser()
|
||||
read_static_image.cache_clear()
|
||||
|
||||
|
||||
def debug_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
|
||||
@ -63,14 +67,23 @@ def debug_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Fr
|
||||
if 'bbox' in frame_processors_globals.face_debugger_items:
|
||||
cv2.rectangle(temp_frame, (bounding_box[0], bounding_box[1]), (bounding_box[2], bounding_box[3]), secondary_color, 2)
|
||||
if 'face-mask' in frame_processors_globals.face_debugger_items:
|
||||
crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, 'arcface_v2', (128, 128))
|
||||
crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, 'arcface_128_v2', (128, 512))
|
||||
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
|
||||
temp_frame_size = temp_frame.shape[:2][::-1]
|
||||
mask_frame = create_static_mask_frame(crop_frame.shape[:2], 0, facefusion.globals.face_mask_padding)
|
||||
mask_frame[mask_frame > 0] = 255
|
||||
inverse_mask_frame = cv2.warpAffine(mask_frame.astype(numpy.uint8), inverse_matrix, temp_frame_size)
|
||||
inverse_mask_contours = cv2.findContours(inverse_mask_frame, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
||||
cv2.drawContours(temp_frame, inverse_mask_contours, 0, primary_color, 2)
|
||||
crop_mask_list = []
|
||||
if 'box' in facefusion.globals.face_mask_types:
|
||||
crop_mask_list.append(create_static_box_mask(crop_frame.shape[:2][::-1], 0, facefusion.globals.face_mask_padding))
|
||||
if 'occlusion' in facefusion.globals.face_mask_types:
|
||||
crop_mask_list.append(create_occlusion_mask(crop_frame))
|
||||
if 'region' in facefusion.globals.face_mask_types:
|
||||
crop_mask_list.append(create_region_mask(crop_frame, facefusion.globals.face_mask_regions))
|
||||
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
|
||||
crop_mask = (crop_mask * 255).astype(numpy.uint8)
|
||||
inverse_mask_frame = cv2.warpAffine(crop_mask, inverse_matrix, temp_frame_size)
|
||||
inverse_mask_frame_edges = cv2.threshold(inverse_mask_frame, 100, 255, cv2.THRESH_BINARY)[1]
|
||||
inverse_mask_frame_edges[inverse_mask_frame_edges > 0] = 255
|
||||
inverse_mask_contours = cv2.findContours(inverse_mask_frame_edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)[0]
|
||||
cv2.drawContours(temp_frame, inverse_mask_contours, -1, primary_color, 2)
|
||||
if bounding_box[3] - bounding_box[1] > 60 and bounding_box[2] - bounding_box[0] > 60:
|
||||
if 'kps' in frame_processors_globals.face_debugger_items:
|
||||
kps = target_face.kps.astype(numpy.int32)
|
||||
@ -83,9 +96,13 @@ def debug_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Fr
|
||||
return temp_frame
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
|
||||
def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
|
||||
pass
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
|
||||
if 'reference' in facefusion.globals.face_selector_mode:
|
||||
similar_faces = find_similar_faces(temp_frame, reference_face, facefusion.globals.reference_face_distance)
|
||||
similar_faces = find_similar_faces(temp_frame, reference_faces, facefusion.globals.reference_face_distance)
|
||||
if similar_faces:
|
||||
for similar_face in similar_faces:
|
||||
temp_frame = debug_face(source_face, similar_face, temp_frame)
|
||||
@ -101,23 +118,25 @@ def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame)
|
||||
return temp_frame
|
||||
|
||||
|
||||
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
source_face = get_one_face(read_static_image(source_path))
|
||||
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
def process_frames(source_paths : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
source_frames = read_static_images(source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
for temp_frame_path in temp_frame_paths:
|
||||
temp_frame = read_image(temp_frame_path)
|
||||
result_frame = process_frame(source_face, reference_face, temp_frame)
|
||||
result_frame = process_frame(source_face, reference_faces, temp_frame)
|
||||
write_image(temp_frame_path, result_frame)
|
||||
update_progress()
|
||||
|
||||
|
||||
def process_image(source_path : str, target_path : str, output_path : str) -> None:
|
||||
source_face = get_one_face(read_static_image(source_path))
|
||||
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
|
||||
source_frames = read_static_images(source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
target_frame = read_static_image(target_path)
|
||||
reference_face = get_one_face(target_frame, facefusion.globals.reference_face_position) if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
result_frame = process_frame(source_face, reference_face, target_frame)
|
||||
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
result_frame = process_frame(source_face, reference_faces, target_frame)
|
||||
write_image(output_path, result_frame)
|
||||
|
||||
|
||||
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
|
||||
frame_processors.multi_process_frames(source_path, temp_frame_paths, process_frames)
|
||||
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
|
||||
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Any, List, Dict, Literal, Optional
|
||||
from typing import Any, List, Literal, Optional
|
||||
from argparse import ArgumentParser
|
||||
import cv2
|
||||
import threading
|
||||
@ -7,69 +7,73 @@ import onnxruntime
|
||||
|
||||
import facefusion.globals
|
||||
import facefusion.processors.frame.core as frame_processors
|
||||
from facefusion import wording
|
||||
from facefusion.face_analyser import get_many_faces, clear_face_analyser
|
||||
from facefusion import logger, wording
|
||||
from facefusion.face_analyser import get_many_faces, clear_face_analyser, find_similar_faces, get_one_face
|
||||
from facefusion.face_helper import warp_face, paste_back
|
||||
from facefusion.content_analyser import clear_content_analyser
|
||||
from facefusion.typing import Face, Frame, Update_Process, ProcessMode, ModelValue, OptionsWithModel
|
||||
from facefusion.utilities import conditional_download, resolve_relative_path, is_image, is_video, is_file, is_download_done, create_metavar, update_status
|
||||
from facefusion.face_store import get_reference_faces
|
||||
from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode, ModelSet, OptionsWithModel
|
||||
from facefusion.cli_helper import create_metavar
|
||||
from facefusion.filesystem import is_file, is_image, is_video, resolve_relative_path
|
||||
from facefusion.download import conditional_download, is_download_done
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
from facefusion.processors.frame import globals as frame_processors_globals
|
||||
from facefusion.processors.frame import choices as frame_processors_choices
|
||||
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, clear_face_occluder
|
||||
|
||||
FRAME_PROCESSOR = None
|
||||
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
|
||||
THREAD_LOCK : threading.Lock = threading.Lock()
|
||||
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_ENHANCER'
|
||||
MODELS : Dict[str, ModelValue] =\
|
||||
NAME = __name__.upper()
|
||||
MODELS : ModelSet =\
|
||||
{
|
||||
'codeformer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/codeformer.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/codeformer.onnx'),
|
||||
'template': 'ffhq',
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
},
|
||||
'gfpgan_1.2':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.2.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx'),
|
||||
'template': 'ffhq',
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
},
|
||||
'gfpgan_1.3':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.3.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx'),
|
||||
'template': 'ffhq',
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
},
|
||||
'gfpgan_1.4':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gfpgan_1.4.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx'),
|
||||
'template': 'ffhq',
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
},
|
||||
'gpen_bfr_256':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_256.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx'),
|
||||
'template': 'arcface_v2',
|
||||
'template': 'arcface_128_v2',
|
||||
'size': (128, 256)
|
||||
},
|
||||
'gpen_bfr_512':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gpen_bfr_512.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx'),
|
||||
'template': 'ffhq',
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
},
|
||||
'restoreformer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/restoreformer.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/restoreformer.onnx'),
|
||||
'template': 'ffhq',
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
}
|
||||
}
|
||||
@ -110,8 +114,8 @@ def set_options(key : Literal['model'], value : Any) -> None:
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
program.add_argument('--face-enhancer-model', help = wording.get('frame_processor_model_help'), dest = 'face_enhancer_model', default = 'gfpgan_1.4', choices = frame_processors_choices.face_enhancer_models)
|
||||
program.add_argument('--face-enhancer-blend', help = wording.get('frame_processor_blend_help'), dest = 'face_enhancer_blend', type = int, default = 80, choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range))
|
||||
program.add_argument('--face-enhancer-model', help = wording.get('frame_processor_model_help'), default = 'gfpgan_1.4', choices = frame_processors_choices.face_enhancer_models)
|
||||
program.add_argument('--face-enhancer-blend', help = wording.get('frame_processor_blend_help'), type = int, default = 80, choices = frame_processors_choices.face_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.face_enhancer_blend_range))
|
||||
|
||||
|
||||
def apply_args(program : ArgumentParser) -> None:
|
||||
@ -132,16 +136,16 @@ def pre_process(mode : ProcessMode) -> bool:
|
||||
model_url = get_options('model').get('url')
|
||||
model_path = get_options('model').get('path')
|
||||
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
|
||||
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
elif not is_file(model_path):
|
||||
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
|
||||
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
if mode == 'output' and not facefusion.globals.output_path:
|
||||
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -150,6 +154,7 @@ def post_process() -> None:
|
||||
clear_frame_processor()
|
||||
clear_face_analyser()
|
||||
clear_content_analyser()
|
||||
clear_face_occluder()
|
||||
read_static_image.cache_clear()
|
||||
|
||||
|
||||
@ -158,6 +163,12 @@ def enhance_face(target_face: Face, temp_frame: Frame) -> Frame:
|
||||
model_template = get_options('model').get('template')
|
||||
model_size = get_options('model').get('size')
|
||||
crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size)
|
||||
crop_mask_list =\
|
||||
[
|
||||
create_static_box_mask(crop_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, (0, 0, 0, 0))
|
||||
]
|
||||
if 'occlusion' in facefusion.globals.face_mask_types:
|
||||
crop_mask_list.append(create_occlusion_mask(crop_frame))
|
||||
crop_frame = prepare_crop_frame(crop_frame)
|
||||
frame_processor_inputs = {}
|
||||
for frame_processor_input in frame_processor.get_inputs():
|
||||
@ -168,7 +179,8 @@ def enhance_face(target_face: Face, temp_frame: Frame) -> Frame:
|
||||
with THREAD_SEMAPHORE:
|
||||
crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
|
||||
crop_frame = normalize_crop_frame(crop_frame)
|
||||
paste_frame = paste_back(temp_frame, crop_frame, affine_matrix, facefusion.globals.face_mask_blur, (0, 0, 0, 0))
|
||||
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
|
||||
paste_frame = paste_back(temp_frame, crop_frame, crop_mask, affine_matrix)
|
||||
temp_frame = blend_frame(temp_frame, paste_frame)
|
||||
return temp_frame
|
||||
|
||||
@ -195,27 +207,43 @@ def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame:
|
||||
return temp_frame
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
|
||||
many_faces = get_many_faces(temp_frame)
|
||||
if many_faces:
|
||||
for target_face in many_faces:
|
||||
def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Optional[Frame]:
|
||||
return enhance_face(target_face, temp_frame)
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
|
||||
if 'reference' in facefusion.globals.face_selector_mode:
|
||||
similar_faces = find_similar_faces(temp_frame, reference_faces, facefusion.globals.reference_face_distance)
|
||||
if similar_faces:
|
||||
for similar_face in similar_faces:
|
||||
temp_frame = enhance_face(similar_face, temp_frame)
|
||||
if 'one' in facefusion.globals.face_selector_mode:
|
||||
target_face = get_one_face(temp_frame)
|
||||
if target_face:
|
||||
temp_frame = enhance_face(target_face, temp_frame)
|
||||
if 'many' in facefusion.globals.face_selector_mode:
|
||||
many_faces = get_many_faces(temp_frame)
|
||||
if many_faces:
|
||||
for target_face in many_faces:
|
||||
temp_frame = enhance_face(target_face, temp_frame)
|
||||
return temp_frame
|
||||
|
||||
|
||||
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
def process_frames(source_path : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
for temp_frame_path in temp_frame_paths:
|
||||
temp_frame = read_image(temp_frame_path)
|
||||
result_frame = process_frame(None, None, temp_frame)
|
||||
result_frame = process_frame(None, reference_faces, temp_frame)
|
||||
write_image(temp_frame_path, result_frame)
|
||||
update_progress()
|
||||
|
||||
|
||||
def process_image(source_path : str, target_path : str, output_path : str) -> None:
|
||||
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
target_frame = read_static_image(target_path)
|
||||
result_frame = process_frame(None, None, target_frame)
|
||||
result_frame = process_frame(None, reference_faces, target_frame)
|
||||
write_image(output_path, result_frame)
|
||||
|
||||
|
||||
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
|
||||
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
|
||||
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Any, List, Dict, Literal, Optional
|
||||
from typing import Any, List, Literal, Optional
|
||||
from argparse import ArgumentParser
|
||||
import threading
|
||||
import numpy
|
||||
@ -8,29 +8,31 @@ from onnx import numpy_helper
|
||||
|
||||
import facefusion.globals
|
||||
import facefusion.processors.frame.core as frame_processors
|
||||
from facefusion import wording
|
||||
from facefusion.face_analyser import get_one_face, get_many_faces, find_similar_faces, clear_face_analyser
|
||||
from facefusion import logger, wording
|
||||
from facefusion.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser
|
||||
from facefusion.face_helper import warp_face, paste_back
|
||||
from facefusion.face_reference import get_face_reference
|
||||
from facefusion.face_store import get_reference_faces
|
||||
from facefusion.content_analyser import clear_content_analyser
|
||||
from facefusion.typing import Face, Frame, Update_Process, ProcessMode, ModelValue, OptionsWithModel, Embedding
|
||||
from facefusion.utilities import conditional_download, resolve_relative_path, is_image, is_video, is_file, is_download_done, update_status
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, Embedding
|
||||
from facefusion.filesystem import is_file, is_image, are_images, is_video, resolve_relative_path
|
||||
from facefusion.download import conditional_download, is_download_done
|
||||
from facefusion.vision import read_image, read_static_image, read_static_images, write_image
|
||||
from facefusion.processors.frame import globals as frame_processors_globals
|
||||
from facefusion.processors.frame import choices as frame_processors_choices
|
||||
from facefusion.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser
|
||||
|
||||
FRAME_PROCESSOR = None
|
||||
MODEL_MATRIX = None
|
||||
THREAD_LOCK : threading.Lock = threading.Lock()
|
||||
NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER'
|
||||
MODELS : Dict[str, ModelValue] =\
|
||||
NAME = __name__.upper()
|
||||
MODELS : ModelSet =\
|
||||
{
|
||||
'blendswap_256':
|
||||
{
|
||||
'type': 'blendswap',
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/blendswap_256.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/blendswap_256.onnx'),
|
||||
'template': 'ffhq',
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 256),
|
||||
'mean': [ 0.0, 0.0, 0.0 ],
|
||||
'standard_deviation': [ 1.0, 1.0, 1.0 ]
|
||||
@ -40,7 +42,7 @@ MODELS : Dict[str, ModelValue] =\
|
||||
'type': 'inswapper',
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/inswapper_128.onnx'),
|
||||
'template': 'arcface_v2',
|
||||
'template': 'arcface_128_v2',
|
||||
'size': (128, 128),
|
||||
'mean': [ 0.0, 0.0, 0.0 ],
|
||||
'standard_deviation': [ 1.0, 1.0, 1.0 ]
|
||||
@ -50,7 +52,7 @@ MODELS : Dict[str, ModelValue] =\
|
||||
'type': 'inswapper',
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/inswapper_128_fp16.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx'),
|
||||
'template': 'arcface_v2',
|
||||
'template': 'arcface_128_v2',
|
||||
'size': (128, 128),
|
||||
'mean': [ 0.0, 0.0, 0.0 ],
|
||||
'standard_deviation': [ 1.0, 1.0, 1.0 ]
|
||||
@ -60,7 +62,7 @@ MODELS : Dict[str, ModelValue] =\
|
||||
'type': 'simswap',
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_256.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/simswap_256.onnx'),
|
||||
'template': 'arcface_v1',
|
||||
'template': 'arcface_112_v1',
|
||||
'size': (112, 256),
|
||||
'mean': [ 0.485, 0.456, 0.406 ],
|
||||
'standard_deviation': [ 0.229, 0.224, 0.225 ]
|
||||
@ -70,7 +72,7 @@ MODELS : Dict[str, ModelValue] =\
|
||||
'type': 'simswap',
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/simswap_512_unofficial.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx'),
|
||||
'template': 'arcface_v1',
|
||||
'template': 'arcface_112_v1',
|
||||
'size': (112, 512),
|
||||
'mean': [ 0.0, 0.0, 0.0 ],
|
||||
'standard_deviation': [ 1.0, 1.0, 1.0 ]
|
||||
@ -130,7 +132,7 @@ def set_options(key : Literal['model'], value : Any) -> None:
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
program.add_argument('--face-swapper-model', help = wording.get('frame_processor_model_help'), dest = 'face_swapper_model', default = 'inswapper_128', choices = frame_processors_choices.face_swapper_models)
|
||||
program.add_argument('--face-swapper-model', help = wording.get('frame_processor_model_help'), default = 'inswapper_128', choices = frame_processors_choices.face_swapper_models)
|
||||
|
||||
|
||||
def apply_args(program : ArgumentParser) -> None:
|
||||
@ -156,22 +158,23 @@ def pre_process(mode : ProcessMode) -> bool:
|
||||
model_url = get_options('model').get('url')
|
||||
model_path = get_options('model').get('path')
|
||||
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
|
||||
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
elif not is_file(model_path):
|
||||
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
if not is_image(facefusion.globals.source_path):
|
||||
update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
elif not get_one_face(read_static_image(facefusion.globals.source_path)):
|
||||
update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
|
||||
if not are_images(facefusion.globals.source_paths):
|
||||
logger.error(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
for source_frame in read_static_images(facefusion.globals.source_paths):
|
||||
if not get_one_face(source_frame):
|
||||
logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
if mode in [ 'output', 'preview' ] and not is_image(facefusion.globals.target_path) and not is_video(facefusion.globals.target_path):
|
||||
update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
if mode == 'output' and not facefusion.globals.output_path:
|
||||
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -181,6 +184,8 @@ def post_process() -> None:
|
||||
clear_model_matrix()
|
||||
clear_face_analyser()
|
||||
clear_content_analyser()
|
||||
clear_face_occluder()
|
||||
clear_face_parser()
|
||||
read_static_image.cache_clear()
|
||||
|
||||
|
||||
@ -190,6 +195,11 @@ def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Fra
|
||||
model_size = get_options('model').get('size')
|
||||
model_type = get_options('model').get('type')
|
||||
crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size)
|
||||
crop_mask_list = []
|
||||
if 'box' in facefusion.globals.face_mask_types:
|
||||
crop_mask_list.append(create_static_box_mask(crop_frame.shape[:2][::-1], facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding))
|
||||
if 'occlusion' in facefusion.globals.face_mask_types:
|
||||
crop_mask_list.append(create_occlusion_mask(crop_frame))
|
||||
crop_frame = prepare_crop_frame(crop_frame)
|
||||
frame_processor_inputs = {}
|
||||
for frame_processor_input in frame_processor.get_inputs():
|
||||
@ -202,13 +212,16 @@ def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Fra
|
||||
frame_processor_inputs[frame_processor_input.name] = crop_frame
|
||||
crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0]
|
||||
crop_frame = normalize_crop_frame(crop_frame)
|
||||
temp_frame = paste_back(temp_frame, crop_frame, affine_matrix, facefusion.globals.face_mask_blur, facefusion.globals.face_mask_padding)
|
||||
if 'region' in facefusion.globals.face_mask_types:
|
||||
crop_mask_list.append(create_region_mask(crop_frame, facefusion.globals.face_mask_regions))
|
||||
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1)
|
||||
temp_frame = paste_back(temp_frame, crop_frame, crop_mask, affine_matrix)
|
||||
return temp_frame
|
||||
|
||||
|
||||
def prepare_source_frame(source_face : Face) -> numpy.ndarray[Any, Any]:
|
||||
source_frame = read_static_image(facefusion.globals.source_path)
|
||||
source_frame, _ = warp_face(source_frame, source_face.kps, 'arcface_v2', (112, 112))
|
||||
def prepare_source_frame(source_face : Face) -> Frame:
|
||||
source_frame = read_static_image(facefusion.globals.source_paths[0])
|
||||
source_frame, _ = warp_face(source_frame, source_face.kps, 'arcface_112_v2', (112, 112))
|
||||
source_frame = source_frame[:, :, ::-1] / 255.0
|
||||
source_frame = source_frame.transpose(2, 0, 1)
|
||||
source_frame = numpy.expand_dims(source_frame, axis = 0).astype(numpy.float32)
|
||||
@ -243,9 +256,13 @@ def normalize_crop_frame(crop_frame : Frame) -> Frame:
|
||||
return crop_frame
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
|
||||
def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
|
||||
return swap_face(source_face, target_face, temp_frame)
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
|
||||
if 'reference' in facefusion.globals.face_selector_mode:
|
||||
similar_faces = find_similar_faces(temp_frame, reference_face, facefusion.globals.reference_face_distance)
|
||||
similar_faces = find_similar_faces(temp_frame, reference_faces, facefusion.globals.reference_face_distance)
|
||||
if similar_faces:
|
||||
for similar_face in similar_faces:
|
||||
temp_frame = swap_face(source_face, similar_face, temp_frame)
|
||||
@ -261,23 +278,25 @@ def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame)
|
||||
return temp_frame
|
||||
|
||||
|
||||
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
source_face = get_one_face(read_static_image(source_path))
|
||||
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
def process_frames(source_paths : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
source_frames = read_static_images(source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
for temp_frame_path in temp_frame_paths:
|
||||
temp_frame = read_image(temp_frame_path)
|
||||
result_frame = process_frame(source_face, reference_face, temp_frame)
|
||||
result_frame = process_frame(source_face, reference_faces, temp_frame)
|
||||
write_image(temp_frame_path, result_frame)
|
||||
update_progress()
|
||||
|
||||
|
||||
def process_image(source_path : str, target_path : str, output_path : str) -> None:
|
||||
source_face = get_one_face(read_static_image(source_path))
|
||||
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
|
||||
source_frames = read_static_images(source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
target_frame = read_static_image(target_path)
|
||||
reference_face = get_one_face(target_frame, facefusion.globals.reference_face_position) if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
result_frame = process_frame(source_face, reference_face, target_frame)
|
||||
result_frame = process_frame(source_face, reference_faces, target_frame)
|
||||
write_image(output_path, result_frame)
|
||||
|
||||
|
||||
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
|
||||
frame_processors.multi_process_frames(source_path, temp_frame_paths, process_frames)
|
||||
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
|
||||
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Any, List, Dict, Literal, Optional
|
||||
from typing import Any, List, Literal, Optional
|
||||
from argparse import ArgumentParser
|
||||
import threading
|
||||
import cv2
|
||||
@ -7,11 +7,14 @@ from realesrgan import RealESRGANer
|
||||
|
||||
import facefusion.globals
|
||||
import facefusion.processors.frame.core as frame_processors
|
||||
from facefusion import wording
|
||||
from facefusion import logger, wording
|
||||
from facefusion.face_analyser import clear_face_analyser
|
||||
from facefusion.content_analyser import clear_content_analyser
|
||||
from facefusion.typing import Frame, Face, Update_Process, ProcessMode, ModelValue, OptionsWithModel
|
||||
from facefusion.utilities import conditional_download, resolve_relative_path, is_file, is_download_done, map_device, create_metavar, update_status
|
||||
from facefusion.typing import Face, FaceSet, Frame, Update_Process, ProcessMode, ModelSet, OptionsWithModel
|
||||
from facefusion.cli_helper import create_metavar
|
||||
from facefusion.execution_helper import map_device
|
||||
from facefusion.filesystem import is_file, resolve_relative_path
|
||||
from facefusion.download import conditional_download, is_download_done
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
from facefusion.processors.frame import globals as frame_processors_globals
|
||||
from facefusion.processors.frame import choices as frame_processors_choices
|
||||
@ -19,8 +22,8 @@ from facefusion.processors.frame import choices as frame_processors_choices
|
||||
FRAME_PROCESSOR = None
|
||||
THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore()
|
||||
THREAD_LOCK : threading.Lock = threading.Lock()
|
||||
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER'
|
||||
MODELS: Dict[str, ModelValue] =\
|
||||
NAME = __name__.upper()
|
||||
MODELS : ModelSet =\
|
||||
{
|
||||
'real_esrgan_x2plus':
|
||||
{
|
||||
@ -88,8 +91,8 @@ def set_options(key : Literal['model'], value : Any) -> None:
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
program.add_argument('--frame-enhancer-model', help = wording.get('frame_processor_model_help'), dest = 'frame_enhancer_model', default = 'real_esrgan_x2plus', choices = frame_processors_choices.frame_enhancer_models)
|
||||
program.add_argument('--frame-enhancer-blend', help = wording.get('frame_processor_blend_help'), dest = 'frame_enhancer_blend', type = int, default = 80, choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range))
|
||||
program.add_argument('--frame-enhancer-model', help = wording.get('frame_processor_model_help'), default = 'real_esrgan_x2plus', choices = frame_processors_choices.frame_enhancer_models)
|
||||
program.add_argument('--frame-enhancer-blend', help = wording.get('frame_processor_blend_help'), type = int, default = 80, choices = frame_processors_choices.frame_enhancer_blend_range, metavar = create_metavar(frame_processors_choices.frame_enhancer_blend_range))
|
||||
|
||||
|
||||
def apply_args(program : ArgumentParser) -> None:
|
||||
@ -110,13 +113,13 @@ def pre_process(mode : ProcessMode) -> bool:
|
||||
model_url = get_options('model').get('url')
|
||||
model_path = get_options('model').get('path')
|
||||
if not facefusion.globals.skip_download and not is_download_done(model_url, model_path):
|
||||
update_status(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
elif not is_file(model_path):
|
||||
update_status(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
if mode == 'output' and not facefusion.globals.output_path:
|
||||
update_status(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
|
||||
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME)
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -143,11 +146,15 @@ def blend_frame(temp_frame : Frame, paste_frame : Frame) -> Frame:
|
||||
return temp_frame
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
|
||||
def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame:
|
||||
pass
|
||||
|
||||
|
||||
def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
|
||||
return enhance_frame(temp_frame)
|
||||
|
||||
|
||||
def process_frames(source_path : str, temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
def process_frames(source_paths : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None:
|
||||
for temp_frame_path in temp_frame_paths:
|
||||
temp_frame = read_image(temp_frame_path)
|
||||
result_frame = process_frame(None, None, temp_frame)
|
||||
@ -155,11 +162,11 @@ def process_frames(source_path : str, temp_frame_paths : List[str], update_progr
|
||||
update_progress()
|
||||
|
||||
|
||||
def process_image(source_path : str, target_path : str, output_path : str) -> None:
|
||||
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
|
||||
target_frame = read_static_image(target_path)
|
||||
result = process_frame(None, None, target_frame)
|
||||
write_image(output_path, result)
|
||||
|
||||
|
||||
def process_video(source_path : str, temp_frame_paths : List[str]) -> None:
|
||||
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
|
||||
frame_processors.multi_process_frames(None, temp_frame_paths, process_frames)
|
||||
|
@ -1,5 +1,5 @@
|
||||
from collections import namedtuple
|
||||
from typing import Any, Literal, Callable, List, Tuple, Dict, TypedDict
|
||||
from collections import namedtuple
|
||||
import numpy
|
||||
|
||||
Bbox = numpy.ndarray[Any, Any]
|
||||
@ -16,14 +16,21 @@ Face = namedtuple('Face',
|
||||
'gender',
|
||||
'age'
|
||||
])
|
||||
FaceSet = Dict[str, List[Face]]
|
||||
FaceStore = TypedDict('FaceStore',
|
||||
{
|
||||
'static_faces' : FaceSet,
|
||||
'reference_faces': FaceSet
|
||||
})
|
||||
Frame = numpy.ndarray[Any, Any]
|
||||
Mask = numpy.ndarray[Any, Any]
|
||||
Matrix = numpy.ndarray[Any, Any]
|
||||
Padding = Tuple[int, int, int, int]
|
||||
|
||||
Update_Process = Callable[[], None]
|
||||
Process_Frames = Callable[[str, List[str], Update_Process], None]
|
||||
|
||||
Template = Literal['arcface_v1', 'arcface_v2', 'ffhq']
|
||||
Process_Frames = Callable[[List[str], List[str], Update_Process], None]
|
||||
LogLevel = Literal['error', 'warn', 'info', 'debug']
|
||||
Template = Literal['arcface_112_v1', 'arcface_112_v2', 'arcface_128_v2', 'ffhq_512']
|
||||
ProcessMode = Literal['output', 'preview', 'stream']
|
||||
FaceSelectorMode = Literal['reference', 'one', 'many']
|
||||
FaceAnalyserOrder = Literal['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best']
|
||||
@ -31,10 +38,13 @@ FaceAnalyserAge = Literal['child', 'teen', 'adult', 'senior']
|
||||
FaceAnalyserGender = Literal['male', 'female']
|
||||
FaceDetectorModel = Literal['retinaface', 'yunet']
|
||||
FaceRecognizerModel = Literal['arcface_blendswap', 'arcface_inswapper', 'arcface_simswap']
|
||||
FaceMaskType = Literal['box', 'occlusion', 'region']
|
||||
FaceMaskRegion = Literal['skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'eye-glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip']
|
||||
TempFrameFormat = Literal['jpg', 'png']
|
||||
OutputVideoEncoder = Literal['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc']
|
||||
|
||||
ModelValue = Dict[str, Any]
|
||||
ModelSet = Dict[str, ModelValue]
|
||||
OptionsWithModel = TypedDict('OptionsWithModel',
|
||||
{
|
||||
'model' : ModelValue
|
||||
|
@ -7,11 +7,12 @@ import gradio
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.face_analyser import get_face_analyser
|
||||
from facefusion.face_cache import clear_faces_cache
|
||||
from facefusion.face_store import clear_static_faces
|
||||
from facefusion.processors.frame.core import get_frame_processors_modules
|
||||
from facefusion.vision import count_video_frame_total
|
||||
from facefusion.core import limit_resources, conditional_process
|
||||
from facefusion.utilities import normalize_output_path, clear_temp
|
||||
from facefusion.normalizer import normalize_output_path
|
||||
from facefusion.filesystem import clear_temp
|
||||
from facefusion.uis.core import get_ui_component
|
||||
|
||||
BENCHMARK_RESULTS_DATAFRAME : Optional[gradio.Dataframe] = None
|
||||
@ -75,7 +76,7 @@ def listen() -> None:
|
||||
|
||||
|
||||
def start(benchmark_runs : List[str], benchmark_cycles : int) -> Generator[List[Any], None, None]:
|
||||
facefusion.globals.source_path = '.assets/examples/source.jpg'
|
||||
facefusion.globals.source_paths = [ '.assets/examples/source.jpg' ]
|
||||
target_paths = [ BENCHMARKS[benchmark_run] for benchmark_run in benchmark_runs if benchmark_run in BENCHMARKS ]
|
||||
benchmark_results = []
|
||||
if target_paths:
|
||||
@ -94,7 +95,7 @@ def pre_process() -> None:
|
||||
|
||||
|
||||
def post_process() -> None:
|
||||
clear_faces_cache()
|
||||
clear_static_faces()
|
||||
|
||||
|
||||
def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]:
|
||||
@ -102,7 +103,7 @@ def benchmark(target_path : str, benchmark_cycles : int) -> List[Any]:
|
||||
total_fps = 0.0
|
||||
for i in range(benchmark_cycles):
|
||||
facefusion.globals.target_path = target_path
|
||||
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_path, facefusion.globals.target_path, tempfile.gettempdir())
|
||||
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_paths, facefusion.globals.target_path, tempfile.gettempdir())
|
||||
video_frame_total = count_video_frame_total(facefusion.globals.target_path)
|
||||
start_time = time.perf_counter()
|
||||
conditional_process()
|
||||
|
@ -6,7 +6,7 @@ import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.face_analyser import clear_face_analyser
|
||||
from facefusion.processors.frame.core import clear_frame_processors_modules
|
||||
from facefusion.utilities import encode_execution_providers, decode_execution_providers
|
||||
from facefusion.execution_helper import encode_execution_providers, decode_execution_providers
|
||||
|
||||
EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
|
||||
|
@ -53,7 +53,7 @@ def render() -> None:
|
||||
FACE_DETECTOR_SCORE_SLIDER = gradio.Slider(
|
||||
label = wording.get('face_detector_score_slider_label'),
|
||||
value = facefusion.globals.face_detector_score,
|
||||
step =facefusion.choices.face_detector_score_range[1] - facefusion.choices.face_detector_score_range[0],
|
||||
step = facefusion.choices.face_detector_score_range[1] - facefusion.choices.face_detector_score_range[0],
|
||||
minimum = facefusion.choices.face_detector_score_range[0],
|
||||
maximum = facefusion.choices.face_detector_score_range[-1]
|
||||
)
|
||||
|
@ -1,33 +1,49 @@
|
||||
from typing import Optional
|
||||
from typing import Optional, Tuple, List
|
||||
import gradio
|
||||
|
||||
import facefusion.globals
|
||||
import facefusion.choices
|
||||
from facefusion import wording
|
||||
from facefusion.typing import FaceMaskType, FaceMaskRegion
|
||||
from facefusion.uis.core import register_ui_component
|
||||
|
||||
FACE_MASK_TYPES_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
FACE_MASK_BLUR_SLIDER : Optional[gradio.Slider] = None
|
||||
FACE_MASK_BOX_GROUP : Optional[gradio.Group] = None
|
||||
FACE_MASK_REGION_GROUP : Optional[gradio.Group] = None
|
||||
FACE_MASK_PADDING_TOP_SLIDER : Optional[gradio.Slider] = None
|
||||
FACE_MASK_PADDING_RIGHT_SLIDER : Optional[gradio.Slider] = None
|
||||
FACE_MASK_PADDING_BOTTOM_SLIDER : Optional[gradio.Slider] = None
|
||||
FACE_MASK_PADDING_LEFT_SLIDER : Optional[gradio.Slider] = None
|
||||
FACE_MASK_REGION_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
|
||||
|
||||
def render() -> None:
|
||||
global FACE_MASK_TYPES_CHECKBOX_GROUP
|
||||
global FACE_MASK_BLUR_SLIDER
|
||||
global FACE_MASK_BOX_GROUP
|
||||
global FACE_MASK_REGION_GROUP
|
||||
global FACE_MASK_PADDING_TOP_SLIDER
|
||||
global FACE_MASK_PADDING_RIGHT_SLIDER
|
||||
global FACE_MASK_PADDING_BOTTOM_SLIDER
|
||||
global FACE_MASK_PADDING_LEFT_SLIDER
|
||||
global FACE_MASK_REGION_CHECKBOX_GROUP
|
||||
|
||||
FACE_MASK_BLUR_SLIDER = gradio.Slider(
|
||||
label = wording.get('face_mask_blur_slider_label'),
|
||||
step = facefusion.choices.face_mask_blur_range[1] - facefusion.choices.face_mask_blur_range[0],
|
||||
minimum = facefusion.choices.face_mask_blur_range[0],
|
||||
maximum = facefusion.choices.face_mask_blur_range[-1],
|
||||
value = facefusion.globals.face_mask_blur
|
||||
has_box_mask = 'box' in facefusion.globals.face_mask_types
|
||||
has_region_mask = 'region' in facefusion.globals.face_mask_types
|
||||
FACE_MASK_TYPES_CHECKBOX_GROUP = gradio.CheckboxGroup(
|
||||
label = wording.get('face_mask_types_checkbox_group_label'),
|
||||
choices = facefusion.choices.face_mask_types,
|
||||
value = facefusion.globals.face_mask_types
|
||||
)
|
||||
with gradio.Group():
|
||||
with gradio.Group(visible = has_box_mask) as FACE_MASK_BOX_GROUP:
|
||||
FACE_MASK_BLUR_SLIDER = gradio.Slider(
|
||||
label = wording.get('face_mask_blur_slider_label'),
|
||||
step = facefusion.choices.face_mask_blur_range[1] - facefusion.choices.face_mask_blur_range[0],
|
||||
minimum = facefusion.choices.face_mask_blur_range[0],
|
||||
maximum = facefusion.choices.face_mask_blur_range[-1],
|
||||
value = facefusion.globals.face_mask_blur
|
||||
)
|
||||
with gradio.Row():
|
||||
FACE_MASK_PADDING_TOP_SLIDER = gradio.Slider(
|
||||
label = wording.get('face_mask_padding_top_slider_label'),
|
||||
@ -58,23 +74,50 @@ def render() -> None:
|
||||
maximum = facefusion.choices.face_mask_padding_range[-1],
|
||||
value = facefusion.globals.face_mask_padding[3]
|
||||
)
|
||||
with gradio.Row():
|
||||
FACE_MASK_REGION_CHECKBOX_GROUP = gradio.CheckboxGroup(
|
||||
label = wording.get('face_mask_region_checkbox_group_label'),
|
||||
choices = facefusion.choices.face_mask_regions,
|
||||
value = facefusion.globals.face_mask_regions,
|
||||
visible = has_region_mask
|
||||
)
|
||||
register_ui_component('face_mask_types_checkbox_group', FACE_MASK_TYPES_CHECKBOX_GROUP)
|
||||
register_ui_component('face_mask_blur_slider', FACE_MASK_BLUR_SLIDER)
|
||||
register_ui_component('face_mask_padding_top_slider', FACE_MASK_PADDING_TOP_SLIDER)
|
||||
register_ui_component('face_mask_padding_right_slider', FACE_MASK_PADDING_RIGHT_SLIDER)
|
||||
register_ui_component('face_mask_padding_bottom_slider', FACE_MASK_PADDING_BOTTOM_SLIDER)
|
||||
register_ui_component('face_mask_padding_left_slider', FACE_MASK_PADDING_LEFT_SLIDER)
|
||||
register_ui_component('face_mask_region_checkbox_group', FACE_MASK_REGION_CHECKBOX_GROUP)
|
||||
|
||||
|
||||
def listen() -> None:
|
||||
FACE_MASK_TYPES_CHECKBOX_GROUP.change(update_face_mask_type, inputs = FACE_MASK_TYPES_CHECKBOX_GROUP, outputs = [ FACE_MASK_TYPES_CHECKBOX_GROUP, FACE_MASK_BOX_GROUP, FACE_MASK_REGION_CHECKBOX_GROUP ])
|
||||
FACE_MASK_BLUR_SLIDER.change(update_face_mask_blur, inputs = FACE_MASK_BLUR_SLIDER)
|
||||
FACE_MASK_REGION_CHECKBOX_GROUP.change(update_face_mask_regions, inputs = FACE_MASK_REGION_CHECKBOX_GROUP, outputs = FACE_MASK_REGION_CHECKBOX_GROUP)
|
||||
face_mask_padding_sliders = [ FACE_MASK_PADDING_TOP_SLIDER, FACE_MASK_PADDING_RIGHT_SLIDER, FACE_MASK_PADDING_BOTTOM_SLIDER, FACE_MASK_PADDING_LEFT_SLIDER ]
|
||||
for face_mask_padding_slider in face_mask_padding_sliders:
|
||||
face_mask_padding_slider.change(update_face_mask_padding, inputs = face_mask_padding_sliders)
|
||||
|
||||
|
||||
def update_face_mask_type(face_mask_types : List[FaceMaskType]) -> Tuple[gradio.CheckboxGroup, gradio.Group, gradio.CheckboxGroup]:
|
||||
if not face_mask_types:
|
||||
face_mask_types = facefusion.choices.face_mask_types
|
||||
facefusion.globals.face_mask_types = face_mask_types
|
||||
has_box_mask = 'box' in face_mask_types
|
||||
has_region_mask = 'region' in face_mask_types
|
||||
return gradio.CheckboxGroup(value = face_mask_types), gradio.Group(visible = has_box_mask), gradio.CheckboxGroup(visible = has_region_mask)
|
||||
|
||||
|
||||
def update_face_mask_blur(face_mask_blur : float) -> None:
|
||||
facefusion.globals.face_mask_blur = face_mask_blur
|
||||
|
||||
|
||||
def update_face_mask_padding(face_mask_padding_top : int, face_mask_padding_right : int, face_mask_padding_bottom : int, face_mask_padding_left : int) -> None:
|
||||
facefusion.globals.face_mask_padding = (face_mask_padding_top, face_mask_padding_right, face_mask_padding_bottom, face_mask_padding_left)
|
||||
|
||||
|
||||
def update_face_mask_regions(face_mask_regions : List[FaceMaskRegion]) -> gradio.CheckboxGroup:
|
||||
if not face_mask_regions:
|
||||
face_mask_regions = facefusion.choices.face_mask_regions
|
||||
facefusion.globals.face_mask_regions = face_mask_regions
|
||||
return gradio.CheckboxGroup(value = face_mask_regions)
|
@ -5,12 +5,11 @@ import gradio
|
||||
import facefusion.globals
|
||||
import facefusion.choices
|
||||
from facefusion import wording
|
||||
from facefusion.face_cache import clear_faces_cache
|
||||
from facefusion.face_store import clear_static_faces, clear_reference_faces
|
||||
from facefusion.vision import get_video_frame, read_static_image, normalize_frame_color
|
||||
from facefusion.face_analyser import get_many_faces
|
||||
from facefusion.face_reference import clear_face_reference
|
||||
from facefusion.typing import Frame, FaceSelectorMode
|
||||
from facefusion.utilities import is_image, is_video
|
||||
from facefusion.filesystem import is_image, is_video
|
||||
from facefusion.uis.core import get_ui_component, register_ui_component
|
||||
from facefusion.uis.typing import ComponentName
|
||||
|
||||
@ -111,8 +110,8 @@ def update_face_selector_mode(face_selector_mode : FaceSelectorMode) -> Tuple[gr
|
||||
|
||||
|
||||
def clear_and_update_reference_face_position(event : gradio.SelectData) -> gradio.Gallery:
|
||||
clear_face_reference()
|
||||
clear_faces_cache()
|
||||
clear_reference_faces()
|
||||
clear_static_faces()
|
||||
update_reference_face_position(event.index)
|
||||
return update_reference_position_gallery()
|
||||
|
||||
@ -130,8 +129,8 @@ def update_reference_frame_number(reference_frame_number : int) -> None:
|
||||
|
||||
|
||||
def clear_and_update_reference_position_gallery() -> gradio.Gallery:
|
||||
clear_face_reference()
|
||||
clear_faces_cache()
|
||||
clear_reference_faces()
|
||||
clear_static_faces()
|
||||
return update_reference_position_gallery()
|
||||
|
||||
|
||||
|
@ -4,7 +4,7 @@ import gradio
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.processors.frame.core import load_frame_processor_module, clear_frame_processors_modules
|
||||
from facefusion.utilities import list_module_names
|
||||
from facefusion.filesystem import list_module_names
|
||||
from facefusion.uis.core import register_ui_component
|
||||
|
||||
FRAME_PROCESSORS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
|
@ -5,7 +5,8 @@ import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.core import limit_resources, conditional_process
|
||||
from facefusion.uis.core import get_ui_component
|
||||
from facefusion.utilities import is_image, is_video, normalize_output_path, clear_temp
|
||||
from facefusion.normalizer import normalize_output_path
|
||||
from facefusion.filesystem import is_image, is_video, clear_temp
|
||||
|
||||
OUTPUT_IMAGE : Optional[gradio.Image] = None
|
||||
OUTPUT_VIDEO : Optional[gradio.Video] = None
|
||||
@ -45,7 +46,7 @@ def listen() -> None:
|
||||
|
||||
|
||||
def start(output_path : str) -> Tuple[gradio.Image, gradio.Video]:
|
||||
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_path, facefusion.globals.target_path, output_path)
|
||||
facefusion.globals.output_path = normalize_output_path(facefusion.globals.source_paths, facefusion.globals.target_path, output_path)
|
||||
limit_resources()
|
||||
conditional_process()
|
||||
if is_image(facefusion.globals.output_path):
|
||||
|
@ -6,7 +6,7 @@ import facefusion.globals
|
||||
import facefusion.choices
|
||||
from facefusion import wording
|
||||
from facefusion.typing import OutputVideoEncoder
|
||||
from facefusion.utilities import is_image, is_video
|
||||
from facefusion.filesystem import is_image, is_video
|
||||
from facefusion.uis.typing import ComponentName
|
||||
from facefusion.uis.core import get_ui_component, register_ui_component
|
||||
|
||||
|
@ -4,15 +4,14 @@ import gradio
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.core import conditional_set_face_reference
|
||||
from facefusion.face_cache import clear_faces_cache
|
||||
from facefusion.typing import Frame, Face
|
||||
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension, read_static_image
|
||||
from facefusion.face_analyser import get_one_face, clear_face_analyser
|
||||
from facefusion.face_reference import get_face_reference, clear_face_reference
|
||||
from facefusion.core import conditional_append_reference_faces
|
||||
from facefusion.face_store import clear_static_faces, get_reference_faces, clear_reference_faces
|
||||
from facefusion.typing import Frame, Face, FaceSet
|
||||
from facefusion.vision import get_video_frame, count_video_frame_total, normalize_frame_color, resize_frame_dimension, read_static_image, read_static_images
|
||||
from facefusion.face_analyser import get_average_face, clear_face_analyser
|
||||
from facefusion.content_analyser import analyse_frame
|
||||
from facefusion.processors.frame.core import load_frame_processor_module
|
||||
from facefusion.utilities import is_video, is_image
|
||||
from facefusion.filesystem import is_image, is_video
|
||||
from facefusion.uis.typing import ComponentName
|
||||
from facefusion.uis.core import get_ui_component, register_ui_component
|
||||
|
||||
@ -37,16 +36,17 @@ def render() -> None:
|
||||
'maximum': 100,
|
||||
'visible': False
|
||||
}
|
||||
conditional_set_face_reference()
|
||||
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
|
||||
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
conditional_append_reference_faces()
|
||||
source_frames = read_static_images(facefusion.globals.source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
reference_faces = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
if is_image(facefusion.globals.target_path):
|
||||
target_frame = read_static_image(facefusion.globals.target_path)
|
||||
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
|
||||
preview_frame = process_preview_frame(source_face, reference_faces, target_frame)
|
||||
preview_image_args['value'] = normalize_frame_color(preview_frame)
|
||||
if is_video(facefusion.globals.target_path):
|
||||
temp_frame = get_video_frame(facefusion.globals.target_path, facefusion.globals.reference_frame_number)
|
||||
preview_frame = process_preview_frame(source_face, reference_face, temp_frame)
|
||||
preview_frame = process_preview_frame(source_face, reference_faces, temp_frame)
|
||||
preview_image_args['value'] = normalize_frame_color(preview_frame)
|
||||
preview_image_args['visible'] = True
|
||||
preview_frame_slider_args['value'] = facefusion.globals.reference_frame_number
|
||||
@ -58,7 +58,7 @@ def render() -> None:
|
||||
|
||||
|
||||
def listen() -> None:
|
||||
PREVIEW_FRAME_SLIDER.change(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
|
||||
PREVIEW_FRAME_SLIDER.release(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
|
||||
multi_one_component_names : List[ComponentName] =\
|
||||
[
|
||||
'source_image',
|
||||
@ -101,11 +101,13 @@ def listen() -> None:
|
||||
'frame_enhancer_blend_slider',
|
||||
'face_selector_mode_dropdown',
|
||||
'reference_face_distance_slider',
|
||||
'face_mask_types_checkbox_group',
|
||||
'face_mask_blur_slider',
|
||||
'face_mask_padding_top_slider',
|
||||
'face_mask_padding_bottom_slider',
|
||||
'face_mask_padding_left_slider',
|
||||
'face_mask_padding_right_slider'
|
||||
'face_mask_padding_right_slider',
|
||||
'face_mask_region_checkbox_group'
|
||||
]
|
||||
for component_name in change_one_component_names:
|
||||
component = get_ui_component(component_name)
|
||||
@ -126,15 +128,17 @@ def listen() -> None:
|
||||
|
||||
def clear_and_update_preview_image(frame_number : int = 0) -> gradio.Image:
|
||||
clear_face_analyser()
|
||||
clear_face_reference()
|
||||
clear_faces_cache()
|
||||
clear_reference_faces()
|
||||
clear_static_faces()
|
||||
return update_preview_image(frame_number)
|
||||
|
||||
|
||||
def update_preview_image(frame_number : int = 0) -> gradio.Image:
|
||||
conditional_set_face_reference()
|
||||
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
|
||||
reference_face = get_face_reference() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
clear_reference_faces()
|
||||
conditional_append_reference_faces()
|
||||
source_frames = read_static_images(facefusion.globals.source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
reference_face = get_reference_faces() if 'reference' in facefusion.globals.face_selector_mode else None
|
||||
if is_image(facefusion.globals.target_path):
|
||||
target_frame = read_static_image(facefusion.globals.target_path)
|
||||
preview_frame = process_preview_frame(source_face, reference_face, target_frame)
|
||||
@ -155,7 +159,7 @@ def update_preview_frame_slider() -> gradio.Slider:
|
||||
return gradio.Slider(value = None, maximum = None, visible = False)
|
||||
|
||||
|
||||
def process_preview_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame:
|
||||
def process_preview_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame:
|
||||
temp_frame = resize_frame_dimension(temp_frame, 640, 640)
|
||||
if analyse_frame(temp_frame):
|
||||
return cv2.GaussianBlur(temp_frame, (99, 99), 0)
|
||||
@ -164,7 +168,7 @@ def process_preview_frame(source_face : Face, reference_face : Face, temp_frame
|
||||
if frame_processor_module.pre_process('preview'):
|
||||
temp_frame = frame_processor_module.process_frame(
|
||||
source_face,
|
||||
reference_face,
|
||||
reference_faces,
|
||||
temp_frame
|
||||
)
|
||||
return temp_frame
|
||||
|
@ -1,9 +1,10 @@
|
||||
from typing import Any, IO, Optional
|
||||
from typing import Optional, List
|
||||
import gradio
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.utilities import is_image
|
||||
from facefusion.uis.typing import File
|
||||
from facefusion.filesystem import are_images
|
||||
from facefusion.uis.core import register_ui_component
|
||||
|
||||
SOURCE_FILE : Optional[gradio.File] = None
|
||||
@ -14,9 +15,9 @@ def render() -> None:
|
||||
global SOURCE_FILE
|
||||
global SOURCE_IMAGE
|
||||
|
||||
is_source_image = is_image(facefusion.globals.source_path)
|
||||
are_source_images = are_images(facefusion.globals.source_paths)
|
||||
SOURCE_FILE = gradio.File(
|
||||
file_count = 'single',
|
||||
file_count = 'multiple',
|
||||
file_types =
|
||||
[
|
||||
'.png',
|
||||
@ -24,11 +25,12 @@ def render() -> None:
|
||||
'.webp'
|
||||
],
|
||||
label = wording.get('source_file_label'),
|
||||
value = facefusion.globals.source_path if is_source_image else None
|
||||
value = facefusion.globals.source_paths if are_source_images else None
|
||||
)
|
||||
source_file_names = [ source_file_value['name'] for source_file_value in SOURCE_FILE.value ] if SOURCE_FILE.value else None
|
||||
SOURCE_IMAGE = gradio.Image(
|
||||
value = SOURCE_FILE.value['name'] if is_source_image else None,
|
||||
visible = is_source_image,
|
||||
value = source_file_names[0] if are_source_images else None,
|
||||
visible = are_source_images,
|
||||
show_label = False
|
||||
)
|
||||
register_ui_component('source_image', SOURCE_IMAGE)
|
||||
@ -38,9 +40,10 @@ def listen() -> None:
|
||||
SOURCE_FILE.change(update, inputs = SOURCE_FILE, outputs = SOURCE_IMAGE)
|
||||
|
||||
|
||||
def update(file: IO[Any]) -> gradio.Image:
|
||||
if file and is_image(file.name):
|
||||
facefusion.globals.source_path = file.name
|
||||
return gradio.Image(value = file.name, visible = True)
|
||||
facefusion.globals.source_path = None
|
||||
def update(files : List[File]) -> gradio.Image:
|
||||
file_names = [ file.name for file in files ] if files else None
|
||||
if are_images(file_names):
|
||||
facefusion.globals.source_paths = file_names
|
||||
return gradio.Image(value = file_names[0], visible = True)
|
||||
facefusion.globals.source_paths = None
|
||||
return gradio.Image(value = None, visible = False)
|
||||
|
@ -1,11 +1,11 @@
|
||||
from typing import Any, IO, Tuple, Optional
|
||||
from typing import Tuple, Optional
|
||||
import gradio
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.face_cache import clear_faces_cache
|
||||
from facefusion.face_reference import clear_face_reference
|
||||
from facefusion.utilities import is_image, is_video
|
||||
from facefusion.face_store import clear_static_faces, clear_reference_faces
|
||||
from facefusion.uis.typing import File
|
||||
from facefusion.filesystem import is_image, is_video
|
||||
from facefusion.uis.core import register_ui_component
|
||||
|
||||
TARGET_FILE : Optional[gradio.File] = None
|
||||
@ -50,9 +50,9 @@ def listen() -> None:
|
||||
TARGET_FILE.change(update, inputs = TARGET_FILE, outputs = [ TARGET_IMAGE, TARGET_VIDEO ])
|
||||
|
||||
|
||||
def update(file : IO[Any]) -> Tuple[gradio.Image, gradio.Video]:
|
||||
clear_face_reference()
|
||||
clear_faces_cache()
|
||||
def update(file : File) -> Tuple[gradio.Image, gradio.Video]:
|
||||
clear_reference_faces()
|
||||
clear_static_faces()
|
||||
if file and is_image(file.name):
|
||||
facefusion.globals.target_path = file.name
|
||||
return gradio.Image(value = file.name, visible = True), gradio.Video(value = None, visible = False)
|
||||
|
@ -5,7 +5,7 @@ import facefusion.globals
|
||||
import facefusion.choices
|
||||
from facefusion import wording
|
||||
from facefusion.typing import TempFrameFormat
|
||||
from facefusion.utilities import is_video
|
||||
from facefusion.filesystem import is_video
|
||||
from facefusion.uis.core import get_ui_component
|
||||
|
||||
TEMP_FRAME_FORMAT_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
|
@ -4,7 +4,7 @@ import gradio
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.vision import count_video_frame_total
|
||||
from facefusion.utilities import is_video
|
||||
from facefusion.filesystem import is_video
|
||||
from facefusion.uis.core import get_ui_component
|
||||
|
||||
TRIM_FRAME_START_SLIDER : Optional[gradio.Slider] = None
|
||||
|
@ -9,13 +9,13 @@ import gradio
|
||||
from tqdm import tqdm
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion import logger, wording
|
||||
from facefusion.content_analyser import analyse_stream
|
||||
from facefusion.typing import Frame, Face
|
||||
from facefusion.face_analyser import get_one_face
|
||||
from facefusion.face_analyser import get_average_face
|
||||
from facefusion.processors.frame.core import get_frame_processors_modules
|
||||
from facefusion.utilities import open_ffmpeg
|
||||
from facefusion.vision import normalize_frame_color, read_static_image
|
||||
from facefusion.ffmpeg import open_ffmpeg
|
||||
from facefusion.vision import normalize_frame_color, read_static_images
|
||||
from facefusion.uis.typing import StreamMode, WebcamMode
|
||||
from facefusion.uis.core import get_ui_component
|
||||
|
||||
@ -79,30 +79,34 @@ def listen() -> None:
|
||||
getattr(source_image, method)(stop, cancels = start_event)
|
||||
|
||||
|
||||
def start(mode : WebcamMode, resolution : str, fps : float) -> Generator[Frame, None, None]:
|
||||
def start(webcam_mode : WebcamMode, resolution : str, fps : float) -> Generator[Frame, None, None]:
|
||||
facefusion.globals.face_selector_mode = 'one'
|
||||
facefusion.globals.face_analyser_order = 'large-small'
|
||||
source_face = get_one_face(read_static_image(facefusion.globals.source_path))
|
||||
source_frames = read_static_images(facefusion.globals.source_paths)
|
||||
source_face = get_average_face(source_frames)
|
||||
stream = None
|
||||
if mode in [ 'udp', 'v4l2' ]:
|
||||
stream = open_stream(mode, resolution, fps) # type: ignore[arg-type]
|
||||
if webcam_mode in [ 'udp', 'v4l2' ]:
|
||||
stream = open_stream(webcam_mode, resolution, fps) # type: ignore[arg-type]
|
||||
webcam_width, webcam_height = map(int, resolution.split('x'))
|
||||
webcam_capture = get_webcam_capture()
|
||||
if webcam_capture and webcam_capture.isOpened():
|
||||
webcam_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) # type: ignore[attr-defined]
|
||||
webcam_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) # type: ignore[attr-defined]
|
||||
webcam_capture.set(cv2.CAP_PROP_FRAME_WIDTH, webcam_width)
|
||||
webcam_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, webcam_height)
|
||||
webcam_capture.set(cv2.CAP_PROP_FPS, fps)
|
||||
for capture_frame in multi_process_capture(source_face, webcam_capture, fps):
|
||||
if mode == 'inline':
|
||||
if webcam_mode == 'inline':
|
||||
yield normalize_frame_color(capture_frame)
|
||||
else:
|
||||
stream.stdin.write(capture_frame.tobytes())
|
||||
try:
|
||||
stream.stdin.write(capture_frame.tobytes())
|
||||
except Exception:
|
||||
clear_webcam_capture()
|
||||
yield None
|
||||
|
||||
|
||||
def multi_process_capture(source_face : Face, webcam_capture : cv2.VideoCapture, fps : float) -> Generator[Frame, None, None]:
|
||||
with tqdm(desc = wording.get('processing'), unit = 'frame', ascii = ' =') as progress:
|
||||
with tqdm(desc = wording.get('processing'), unit = 'frame', ascii = ' =', disable = facefusion.globals.log_level in [ 'warn', 'error' ]) as progress:
|
||||
with ThreadPoolExecutor(max_workers = facefusion.globals.execution_thread_count) as executor:
|
||||
futures = []
|
||||
deque_capture_frames : Deque[Frame] = deque()
|
||||
@ -137,11 +141,15 @@ def process_stream_frame(source_face : Face, temp_frame : Frame) -> Frame:
|
||||
return temp_frame
|
||||
|
||||
|
||||
def open_stream(mode : StreamMode, resolution : str, fps : float) -> subprocess.Popen[bytes]:
|
||||
def open_stream(stream_mode : StreamMode, resolution : str, fps : float) -> subprocess.Popen[bytes]:
|
||||
commands = [ '-f', 'rawvideo', '-pix_fmt', 'bgr24', '-s', resolution, '-r', str(fps), '-i', '-' ]
|
||||
if mode == 'udp':
|
||||
if stream_mode == 'udp':
|
||||
commands.extend([ '-b:v', '2000k', '-f', 'mpegts', 'udp://localhost:27000?pkt_size=1316' ])
|
||||
if mode == 'v4l2':
|
||||
device_name = os.listdir('/sys/devices/virtual/video4linux')[0]
|
||||
commands.extend([ '-f', 'v4l2', '/dev/' + device_name ])
|
||||
if stream_mode == 'v4l2':
|
||||
try:
|
||||
device_name = os.listdir('/sys/devices/virtual/video4linux')[0]
|
||||
if device_name:
|
||||
commands.extend([ '-f', 'v4l2', '/dev/' + device_name ])
|
||||
except FileNotFoundError:
|
||||
logger.error(wording.get('stream_not_loaded').format(stream_mode = stream_mode), __name__.upper())
|
||||
return open_ffmpeg(commands)
|
||||
|
@ -5,9 +5,9 @@ import sys
|
||||
import gradio
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import metadata, wording
|
||||
from facefusion import metadata, logger, wording
|
||||
from facefusion.uis.typing import Component, ComponentName
|
||||
from facefusion.utilities import resolve_relative_path
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
|
||||
UI_COMPONENTS: Dict[ComponentName, Component] = {}
|
||||
UI_LAYOUT_MODULES : List[ModuleType] = []
|
||||
@ -27,7 +27,8 @@ def load_ui_layout_module(ui_layout : str) -> Any:
|
||||
for method_name in UI_LAYOUT_METHODS:
|
||||
if not hasattr(ui_layout_module, method_name):
|
||||
raise NotImplementedError
|
||||
except ModuleNotFoundError:
|
||||
except ModuleNotFoundError as exception:
|
||||
logger.debug(exception.msg, __name__.upper())
|
||||
sys.exit(wording.get('ui_layout_not_loaded').format(ui_layout = ui_layout))
|
||||
except NotImplementedError:
|
||||
sys.exit(wording.get('ui_layout_not_implemented').format(ui_layout = ui_layout))
|
||||
|
@ -1,7 +1,7 @@
|
||||
import gradio
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion.utilities import conditional_download
|
||||
from facefusion.download import conditional_download
|
||||
from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, limit_resources, benchmark_options, benchmark
|
||||
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import gradio
|
||||
|
||||
from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, limit_resources, temp_frame, output_options, common_options, source, target, output, preview, trim_frame, face_analyser, face_selector, face_mask
|
||||
from facefusion.uis.components import about, frame_processors, frame_processors_options, execution, execution_thread_count, execution_queue_count, limit_resources, temp_frame, output_options, common_options, source, target, output, preview, trim_frame, face_analyser, face_selector, face_masker
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
@ -47,7 +47,7 @@ def render() -> gradio.Blocks:
|
||||
with gradio.Blocks():
|
||||
face_selector.render()
|
||||
with gradio.Blocks():
|
||||
face_mask.render()
|
||||
face_masker.render()
|
||||
with gradio.Blocks():
|
||||
face_analyser.render()
|
||||
return layout
|
||||
@ -69,7 +69,7 @@ def listen() -> None:
|
||||
preview.listen()
|
||||
trim_frame.listen()
|
||||
face_selector.listen()
|
||||
face_mask.listen()
|
||||
face_masker.listen()
|
||||
face_analyser.listen()
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
from typing import Literal
|
||||
from typing import Literal, Any, IO
|
||||
import gradio
|
||||
|
||||
File = IO[Any]
|
||||
Component = gradio.File or gradio.Image or gradio.Video or gradio.Slider
|
||||
ComponentName = Literal\
|
||||
[
|
||||
@ -17,11 +18,13 @@ ComponentName = Literal\
|
||||
'face_detector_model_dropdown',
|
||||
'face_detector_size_dropdown',
|
||||
'face_detector_score_slider',
|
||||
'face_mask_types_checkbox_group',
|
||||
'face_mask_blur_slider',
|
||||
'face_mask_padding_top_slider',
|
||||
'face_mask_padding_bottom_slider',
|
||||
'face_mask_padding_left_slider',
|
||||
'face_mask_padding_right_slider',
|
||||
'face_mask_region_checkbox_group',
|
||||
'frame_processors_checkbox_group',
|
||||
'face_swapper_model_dropdown',
|
||||
'face_enhancer_model_dropdown',
|
||||
|
@ -1,268 +0,0 @@
|
||||
from typing import Any, List, Optional
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
import glob
|
||||
import filetype
|
||||
import os
|
||||
import platform
|
||||
import shutil
|
||||
import ssl
|
||||
import subprocess
|
||||
import tempfile
|
||||
import urllib.request
|
||||
import onnxruntime
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion import wording
|
||||
from facefusion.typing import Padding
|
||||
from facefusion.vision import detect_fps
|
||||
|
||||
TEMP_DIRECTORY_PATH = os.path.join(tempfile.gettempdir(), 'facefusion')
|
||||
TEMP_OUTPUT_VIDEO_NAME = 'temp.mp4'
|
||||
|
||||
# monkey patch ssl
|
||||
if platform.system().lower() == 'darwin':
|
||||
ssl._create_default_https_context = ssl._create_unverified_context
|
||||
|
||||
|
||||
def run_ffmpeg(args : List[str]) -> bool:
|
||||
commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
|
||||
commands.extend(args)
|
||||
try:
|
||||
subprocess.run(commands, stderr = subprocess.PIPE, check = True)
|
||||
return True
|
||||
except subprocess.CalledProcessError:
|
||||
return False
|
||||
|
||||
|
||||
def open_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
|
||||
commands = [ 'ffmpeg', '-hide_banner', '-loglevel', 'error' ]
|
||||
commands.extend(args)
|
||||
return subprocess.Popen(commands, stdin = subprocess.PIPE)
|
||||
|
||||
|
||||
def extract_frames(target_path : str, fps : float) -> bool:
|
||||
temp_frame_compression = round(31 - (facefusion.globals.temp_frame_quality * 0.31))
|
||||
trim_frame_start = facefusion.globals.trim_frame_start
|
||||
trim_frame_end = facefusion.globals.trim_frame_end
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
|
||||
commands = [ '-hwaccel', 'auto', '-i', target_path, '-q:v', str(temp_frame_compression), '-pix_fmt', 'rgb24' ]
|
||||
if trim_frame_start is not None and trim_frame_end is not None:
|
||||
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ':end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
|
||||
elif trim_frame_start is not None:
|
||||
commands.extend([ '-vf', 'trim=start_frame=' + str(trim_frame_start) + ',fps=' + str(fps) ])
|
||||
elif trim_frame_end is not None:
|
||||
commands.extend([ '-vf', 'trim=end_frame=' + str(trim_frame_end) + ',fps=' + str(fps) ])
|
||||
else:
|
||||
commands.extend([ '-vf', 'fps=' + str(fps) ])
|
||||
commands.extend([ '-vsync', '0', temp_frames_pattern ])
|
||||
return run_ffmpeg(commands)
|
||||
|
||||
|
||||
def compress_image(output_path : str) -> bool:
|
||||
output_image_compression = round(31 - (facefusion.globals.output_image_quality * 0.31))
|
||||
commands = [ '-hwaccel', 'auto', '-i', output_path, '-q:v', str(output_image_compression), '-y', output_path ]
|
||||
return run_ffmpeg(commands)
|
||||
|
||||
|
||||
def merge_video(target_path : str, fps : float) -> bool:
|
||||
temp_output_video_path = get_temp_output_video_path(target_path)
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '%04d')
|
||||
commands = [ '-hwaccel', 'auto', '-r', str(fps), '-i', temp_frames_pattern, '-c:v', facefusion.globals.output_video_encoder ]
|
||||
if facefusion.globals.output_video_encoder in [ 'libx264', 'libx265' ]:
|
||||
output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.51))
|
||||
commands.extend([ '-crf', str(output_video_compression) ])
|
||||
if facefusion.globals.output_video_encoder in [ 'libvpx-vp9' ]:
|
||||
output_video_compression = round(63 - (facefusion.globals.output_video_quality * 0.63))
|
||||
commands.extend([ '-crf', str(output_video_compression) ])
|
||||
if facefusion.globals.output_video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
|
||||
output_video_compression = round(51 - (facefusion.globals.output_video_quality * 0.51))
|
||||
commands.extend([ '-cq', str(output_video_compression) ])
|
||||
commands.extend([ '-pix_fmt', 'yuv420p', '-colorspace', 'bt709', '-y', temp_output_video_path ])
|
||||
return run_ffmpeg(commands)
|
||||
|
||||
|
||||
def restore_audio(target_path : str, output_path : str) -> bool:
|
||||
fps = detect_fps(target_path)
|
||||
trim_frame_start = facefusion.globals.trim_frame_start
|
||||
trim_frame_end = facefusion.globals.trim_frame_end
|
||||
temp_output_video_path = get_temp_output_video_path(target_path)
|
||||
commands = [ '-hwaccel', 'auto', '-i', temp_output_video_path ]
|
||||
if trim_frame_start is not None:
|
||||
start_time = trim_frame_start / fps
|
||||
commands.extend([ '-ss', str(start_time) ])
|
||||
if trim_frame_end is not None:
|
||||
end_time = trim_frame_end / fps
|
||||
commands.extend([ '-to', str(end_time) ])
|
||||
commands.extend([ '-i', target_path, '-c', 'copy', '-map', '0:v:0', '-map', '1:a:0', '-shortest', '-y', output_path ])
|
||||
return run_ffmpeg(commands)
|
||||
|
||||
|
||||
def get_temp_frame_paths(target_path : str) -> List[str]:
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '*')
|
||||
return sorted(glob.glob(temp_frames_pattern))
|
||||
|
||||
|
||||
def get_temp_frames_pattern(target_path : str, temp_frame_prefix : str) -> str:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
return os.path.join(temp_directory_path, temp_frame_prefix + '.' + facefusion.globals.temp_frame_format)
|
||||
|
||||
|
||||
def get_temp_directory_path(target_path : str) -> str:
|
||||
target_name, _ = os.path.splitext(os.path.basename(target_path))
|
||||
return os.path.join(TEMP_DIRECTORY_PATH, target_name)
|
||||
|
||||
|
||||
def get_temp_output_video_path(target_path : str) -> str:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
return os.path.join(temp_directory_path, TEMP_OUTPUT_VIDEO_NAME)
|
||||
|
||||
|
||||
def create_temp(target_path : str) -> None:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
Path(temp_directory_path).mkdir(parents = True, exist_ok = True)
|
||||
|
||||
|
||||
def move_temp(target_path : str, output_path : str) -> None:
|
||||
temp_output_video_path = get_temp_output_video_path(target_path)
|
||||
if is_file(temp_output_video_path):
|
||||
if is_file(output_path):
|
||||
os.remove(output_path)
|
||||
shutil.move(temp_output_video_path, output_path)
|
||||
|
||||
|
||||
def clear_temp(target_path : str) -> None:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
parent_directory_path = os.path.dirname(temp_directory_path)
|
||||
if not facefusion.globals.keep_temp and is_directory(temp_directory_path):
|
||||
shutil.rmtree(temp_directory_path)
|
||||
if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
|
||||
os.rmdir(parent_directory_path)
|
||||
|
||||
|
||||
def normalize_output_path(source_path : Optional[str], target_path : Optional[str], output_path : Optional[str]) -> Optional[str]:
|
||||
if is_file(target_path) and is_directory(output_path):
|
||||
target_name, target_extension = os.path.splitext(os.path.basename(target_path))
|
||||
if is_file(source_path):
|
||||
source_name, _ = os.path.splitext(os.path.basename(source_path))
|
||||
return os.path.join(output_path, source_name + '-' + target_name + target_extension)
|
||||
return os.path.join(output_path, target_name + target_extension)
|
||||
if is_file(target_path) and output_path:
|
||||
_, target_extension = os.path.splitext(os.path.basename(target_path))
|
||||
output_name, output_extension = os.path.splitext(os.path.basename(output_path))
|
||||
output_directory_path = os.path.dirname(output_path)
|
||||
if is_directory(output_directory_path) and output_extension:
|
||||
return os.path.join(output_directory_path, output_name + target_extension)
|
||||
return None
|
||||
return output_path
|
||||
|
||||
|
||||
def normalize_padding(padding : Optional[List[int]]) -> Optional[Padding]:
|
||||
if padding and len(padding) == 1:
|
||||
return tuple([ padding[0], padding[0], padding[0], padding[0] ]) # type: ignore[return-value]
|
||||
if padding and len(padding) == 2:
|
||||
return tuple([ padding[0], padding[1], padding[0], padding[1] ]) # type: ignore[return-value]
|
||||
if padding and len(padding) == 3:
|
||||
return tuple([ padding[0], padding[1], padding[2], padding[1] ]) # type: ignore[return-value]
|
||||
if padding and len(padding) == 4:
|
||||
return tuple(padding) # type: ignore[return-value]
|
||||
return None
|
||||
|
||||
|
||||
def is_file(file_path : str) -> bool:
|
||||
return bool(file_path and os.path.isfile(file_path))
|
||||
|
||||
|
||||
def is_directory(directory_path : str) -> bool:
|
||||
return bool(directory_path and os.path.isdir(directory_path))
|
||||
|
||||
|
||||
def is_image(image_path : str) -> bool:
|
||||
if is_file(image_path):
|
||||
mimetype = filetype.guess(image_path).mime
|
||||
return bool(mimetype and mimetype.startswith('image/'))
|
||||
return False
|
||||
|
||||
|
||||
def is_video(video_path : str) -> bool:
|
||||
if is_file(video_path):
|
||||
mimetype = filetype.guess(video_path).mime
|
||||
return bool(mimetype and mimetype.startswith('video/'))
|
||||
return False
|
||||
|
||||
|
||||
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
|
||||
with ThreadPoolExecutor() as executor:
|
||||
for url in urls:
|
||||
executor.submit(get_download_size, url)
|
||||
for url in urls:
|
||||
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
|
||||
total = get_download_size(url)
|
||||
if is_file(download_file_path):
|
||||
initial = os.path.getsize(download_file_path)
|
||||
else:
|
||||
initial = 0
|
||||
if initial < total:
|
||||
with tqdm(total = total, initial = initial, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =') as progress:
|
||||
subprocess.Popen([ 'curl', '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
|
||||
current = initial
|
||||
while current < total:
|
||||
if is_file(download_file_path):
|
||||
current = os.path.getsize(download_file_path)
|
||||
progress.update(current - progress.n)
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def get_download_size(url : str) -> int:
|
||||
try:
|
||||
response = urllib.request.urlopen(url, timeout = 10)
|
||||
return int(response.getheader('Content-Length'))
|
||||
except (OSError, ValueError):
|
||||
return 0
|
||||
|
||||
|
||||
def is_download_done(url : str, file_path : str) -> bool:
|
||||
if is_file(file_path):
|
||||
return get_download_size(url) == os.path.getsize(file_path)
|
||||
return False
|
||||
|
||||
|
||||
def resolve_relative_path(path : str) -> str:
|
||||
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))
|
||||
|
||||
|
||||
def list_module_names(path : str) -> Optional[List[str]]:
|
||||
if os.path.exists(path):
|
||||
files = os.listdir(path)
|
||||
return [ Path(file).stem for file in files if not Path(file).stem.startswith(('.', '__')) ]
|
||||
return None
|
||||
|
||||
|
||||
def encode_execution_providers(execution_providers : List[str]) -> List[str]:
|
||||
return [ execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers ]
|
||||
|
||||
|
||||
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
|
||||
available_execution_providers = onnxruntime.get_available_providers()
|
||||
encoded_execution_providers = encode_execution_providers(available_execution_providers)
|
||||
return [ execution_provider for execution_provider, encoded_execution_provider in zip(available_execution_providers, encoded_execution_providers) if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers) ]
|
||||
|
||||
|
||||
def map_device(execution_providers : List[str]) -> str:
|
||||
if 'CoreMLExecutionProvider' in execution_providers:
|
||||
return 'mps'
|
||||
if 'CUDAExecutionProvider' in execution_providers or 'ROCMExecutionProvider' in execution_providers :
|
||||
return 'cuda'
|
||||
if 'OpenVINOExecutionProvider' in execution_providers:
|
||||
return 'mkl'
|
||||
return 'cpu'
|
||||
|
||||
|
||||
def create_metavar(ranges : List[Any]) -> str:
|
||||
return '[' + str(ranges[0]) + '-' + str(ranges[-1]) + ']'
|
||||
|
||||
|
||||
def update_status(message : str, scope : str = 'FACEFUSION.CORE') -> None:
|
||||
print('[' + scope + '] ' + message)
|
@ -1,4 +1,4 @@
|
||||
from typing import Optional
|
||||
from typing import Optional, List
|
||||
from functools import lru_cache
|
||||
import cv2
|
||||
|
||||
@ -55,6 +55,14 @@ def read_static_image(image_path : str) -> Optional[Frame]:
|
||||
return read_image(image_path)
|
||||
|
||||
|
||||
def read_static_images(image_paths : List[str]) -> Optional[List[Frame]]:
|
||||
frames = []
|
||||
if image_paths:
|
||||
for image_path in image_paths:
|
||||
frames.append(read_static_image(image_path))
|
||||
return frames
|
||||
|
||||
|
||||
def read_image(image_path : str) -> Optional[Frame]:
|
||||
if image_path:
|
||||
return cv2.imread(image_path)
|
||||
|
@ -3,13 +3,14 @@ WORDING =\
|
||||
'python_not_supported': 'Python version is not supported, upgrade to {version} or higher',
|
||||
'ffmpeg_not_installed': 'FFMpeg is not installed',
|
||||
'install_dependency_help': 'select the variant of {dependency} to install',
|
||||
'skip_venv_help': 'skip the virtual environment check',
|
||||
'source_help': 'select a source image',
|
||||
'target_help': 'select a target image or video',
|
||||
'output_help': 'specify the output file or directory',
|
||||
'frame_processors_help': 'choose from the available frame processors (choices: {choices}, ...)',
|
||||
'frame_processor_model_help': 'choose the model for the frame processor',
|
||||
'frame_processor_blend_help': 'specify the blend factor for the frame processor',
|
||||
'face_debugger_items_help': 'specify the face debugger items',
|
||||
'frame_processor_blend_help': 'specify the blend amount for the frame processor',
|
||||
'face_debugger_items_help': 'specify the face debugger items (choices: {choices})',
|
||||
'ui_layouts_help': 'choose from the available ui layouts (choices: {choices}, ...)',
|
||||
'keep_fps_help': 'preserve the frames per second (fps) of the target',
|
||||
'keep_temp_help': 'retain temporary frames after processing',
|
||||
@ -24,8 +25,10 @@ WORDING =\
|
||||
'reference_face_position_help': 'specify the position of the reference face',
|
||||
'reference_face_distance_help': 'specify the distance between the reference face and the target face',
|
||||
'reference_frame_number_help': 'specify the number of the reference frame',
|
||||
'face_mask_types_help': 'choose from the available face mask types (choices: {choices})',
|
||||
'face_mask_blur_help': 'specify the blur amount for face mask',
|
||||
'face_mask_padding_help': 'specify the face mask padding (top, right, bottom, left) in percent',
|
||||
'face_mask_regions_help': 'choose from the available face mask regions (choices: {choices})',
|
||||
'trim_frame_start_help': 'specify the start frame for extraction',
|
||||
'trim_frame_end_help': 'specify the end frame for extraction',
|
||||
'temp_frame_format_help': 'specify the image format used for frame extraction',
|
||||
@ -34,11 +37,12 @@ WORDING =\
|
||||
'output_video_encoder_help': 'specify the encoder used for the output video',
|
||||
'output_video_quality_help': 'specify the quality used for the output video',
|
||||
'max_memory_help': 'specify the maximum amount of ram to be used (in gb)',
|
||||
'execution_providers_help': 'choose from the available execution providers',
|
||||
'execution_providers_help': 'choose from the available execution providers (choices: {choices}, ...)',
|
||||
'execution_thread_count_help': 'specify the number of execution threads',
|
||||
'execution_queue_count_help': 'specify the number of execution queries',
|
||||
'skip_download_help': 'omit automate downloads and lookups',
|
||||
'headless_help': 'run the program in headless mode',
|
||||
'log_level_help': 'choose from the available log levels',
|
||||
'creating_temp': 'Creating temporary resources',
|
||||
'extracting_frames_fps': 'Extracting frames with {fps} FPS',
|
||||
'analysing': 'Analysing',
|
||||
@ -51,7 +55,7 @@ WORDING =\
|
||||
'merging_video_failed': 'Merging video failed',
|
||||
'skipping_audio': 'Skipping audio',
|
||||
'restoring_audio': 'Restoring audio',
|
||||
'restoring_audio_failed': 'Restoring audio failed',
|
||||
'restoring_audio_skipped': 'Restoring audio skipped',
|
||||
'clearing_temp': 'Clearing temporary resources',
|
||||
'processing_image_succeed': 'Processing to image succeed',
|
||||
'processing_image_failed': 'Processing to image failed',
|
||||
@ -67,6 +71,7 @@ WORDING =\
|
||||
'frame_processor_not_implemented': 'Frame processor {frame_processor} not implemented correctly',
|
||||
'ui_layout_not_loaded': 'UI layout {ui_layout} could not be loaded',
|
||||
'ui_layout_not_implemented': 'UI layout {ui_layout} not implemented correctly',
|
||||
'stream_not_loaded': 'Stream {stream_mode} could not be loaded',
|
||||
'donate_button_label': 'DONATE',
|
||||
'start_button_label': 'START',
|
||||
'stop_button_label': 'STOP',
|
||||
@ -86,11 +91,13 @@ WORDING =\
|
||||
'face_selector_mode_dropdown_label': 'FACE SELECTOR MODE',
|
||||
'reference_face_gallery_label': 'REFERENCE FACE',
|
||||
'reference_face_distance_slider_label': 'REFERENCE FACE DISTANCE',
|
||||
'face_mask_types_checkbox_group_label': 'FACE MASK TYPES',
|
||||
'face_mask_blur_slider_label': 'FACE MASK BLUR',
|
||||
'face_mask_padding_top_slider_label': 'FACE MASK PADDING TOP',
|
||||
'face_mask_padding_bottom_slider_label': 'FACE MASK PADDING BOTTOM',
|
||||
'face_mask_padding_left_slider_label': 'FACE MASK PADDING LEFT',
|
||||
'face_mask_padding_right_slider_label': 'FACE MASK PADDING RIGHT',
|
||||
'face_mask_region_checkbox_group_label': 'FACE MASK REGIONS',
|
||||
'max_memory_slider_label': 'MAX MEMORY',
|
||||
'output_image_or_video_label': 'OUTPUT',
|
||||
'output_path_textbox_label': 'OUTPUT PATH',
|
||||
|
@ -1,11 +1,11 @@
|
||||
basicsr==1.4.2
|
||||
filetype==1.2.0
|
||||
gradio==3.50.2
|
||||
numpy==1.26.1
|
||||
numpy==1.26.2
|
||||
onnx==1.15.0
|
||||
onnxruntime==1.16.0
|
||||
onnxruntime==1.16.3
|
||||
opencv-python==4.8.1.78
|
||||
psutil==5.9.6
|
||||
realesrgan==0.3.0
|
||||
torch==2.1.0
|
||||
torch==2.1.1
|
||||
tqdm==4.66.1
|
||||
|
@ -3,7 +3,7 @@ import sys
|
||||
import pytest
|
||||
|
||||
from facefusion import wording
|
||||
from facefusion.utilities import conditional_download
|
||||
from facefusion.download import conditional_download
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
@ -18,7 +18,7 @@ def before_all() -> None:
|
||||
|
||||
def test_image_to_image() -> None:
|
||||
commands = [ sys.executable, 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.jpg', '-o', '.assets/examples', '--headless' ]
|
||||
run = subprocess.run(commands, stdout = subprocess.PIPE)
|
||||
run = subprocess.run(commands, stdout = subprocess.PIPE, stderr = subprocess.STDOUT)
|
||||
|
||||
assert run.returncode == 0
|
||||
assert wording.get('processing_image_succeed') in run.stdout.decode()
|
||||
@ -26,7 +26,7 @@ def test_image_to_image() -> None:
|
||||
|
||||
def test_image_to_video() -> None:
|
||||
commands = [ sys.executable, 'run.py', '-s', '.assets/examples/source.jpg', '-t', '.assets/examples/target-1080p.mp4', '-o', '.assets/examples', '--trim-frame-end', '10', '--headless' ]
|
||||
run = subprocess.run(commands, stdout = subprocess.PIPE)
|
||||
run = subprocess.run(commands, stdout = subprocess.PIPE, stderr = subprocess.STDOUT)
|
||||
|
||||
assert run.returncode == 0
|
||||
assert wording.get('processing_video_succeed') in run.stdout.decode()
|
||||
|
23
tests/test_download.py
Normal file
23
tests/test_download.py
Normal file
@ -0,0 +1,23 @@
|
||||
import pytest
|
||||
|
||||
from facefusion.download import conditional_download, get_download_size, is_download_done
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
def before_all() -> None:
|
||||
conditional_download('.assets/examples',
|
||||
[
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4'
|
||||
])
|
||||
|
||||
|
||||
def test_get_download_size() -> None:
|
||||
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4') == 191675
|
||||
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-360p.mp4') == 370732
|
||||
assert get_download_size('invalid') == 0
|
||||
|
||||
|
||||
def test_is_download_done() -> None:
|
||||
assert is_download_done('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4', '.assets/examples/target-240p.mp4') is True
|
||||
assert is_download_done('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4','invalid') is False
|
||||
assert is_download_done('invalid', 'invalid') is False
|
9
tests/test_execution_helper.py
Normal file
9
tests/test_execution_helper.py
Normal file
@ -0,0 +1,9 @@
|
||||
from facefusion.execution_helper import encode_execution_providers, decode_execution_providers
|
||||
|
||||
|
||||
def test_encode_execution_providers() -> None:
|
||||
assert encode_execution_providers([ 'CPUExecutionProvider' ]) == [ 'cpu' ]
|
||||
|
||||
|
||||
def test_decode_execution_providers() -> None:
|
||||
assert decode_execution_providers([ 'cpu' ]) == [ 'CPUExecutionProvider' ]
|
100
tests/test_ffmpeg.py
Normal file
100
tests/test_ffmpeg.py
Normal file
@ -0,0 +1,100 @@
|
||||
import glob
|
||||
import subprocess
|
||||
import pytest
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion.filesystem import get_temp_directory_path, create_temp, clear_temp
|
||||
from facefusion.download import conditional_download
|
||||
from facefusion.ffmpeg import extract_frames
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
def before_all() -> None:
|
||||
conditional_download('.assets/examples',
|
||||
[
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples/source.jpg',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4'
|
||||
])
|
||||
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=25', '.assets/examples/target-240p-25fps.mp4' ])
|
||||
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=30', '.assets/examples/target-240p-30fps.mp4' ])
|
||||
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=60', '.assets/examples/target-240p-60fps.mp4' ])
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'function', autouse = True)
|
||||
def before_each() -> None:
|
||||
facefusion.globals.trim_frame_start = None
|
||||
facefusion.globals.trim_frame_end = None
|
||||
facefusion.globals.temp_frame_quality = 80
|
||||
facefusion.globals.temp_frame_format = 'jpg'
|
||||
|
||||
|
||||
def test_extract_frames() -> None:
|
||||
target_paths =\
|
||||
[
|
||||
'.assets/examples/target-240p-25fps.mp4',
|
||||
'.assets/examples/target-240p-30fps.mp4',
|
||||
'.assets/examples/target-240p-60fps.mp4'
|
||||
]
|
||||
for target_path in target_paths:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == 324
|
||||
|
||||
clear_temp(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_start() -> None:
|
||||
facefusion.globals.trim_frame_start = 224
|
||||
data_provider =\
|
||||
[
|
||||
('.assets/examples/target-240p-25fps.mp4', 55),
|
||||
('.assets/examples/target-240p-30fps.mp4', 100),
|
||||
('.assets/examples/target-240p-60fps.mp4', 212)
|
||||
]
|
||||
for target_path, frame_total in data_provider:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_start_and_trim_end() -> None:
|
||||
facefusion.globals.trim_frame_start = 124
|
||||
facefusion.globals.trim_frame_end = 224
|
||||
data_provider =\
|
||||
[
|
||||
('.assets/examples/target-240p-25fps.mp4', 120),
|
||||
('.assets/examples/target-240p-30fps.mp4', 100),
|
||||
('.assets/examples/target-240p-60fps.mp4', 50)
|
||||
]
|
||||
for target_path, frame_total in data_provider:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_end() -> None:
|
||||
facefusion.globals.trim_frame_end = 100
|
||||
data_provider =\
|
||||
[
|
||||
('.assets/examples/target-240p-25fps.mp4', 120),
|
||||
('.assets/examples/target-240p-30fps.mp4', 100),
|
||||
('.assets/examples/target-240p-60fps.mp4', 50)
|
||||
]
|
||||
for target_path, frame_total in data_provider:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp(target_path)
|
31
tests/test_filesystem.py
Normal file
31
tests/test_filesystem.py
Normal file
@ -0,0 +1,31 @@
|
||||
from facefusion.filesystem import is_file, is_directory, is_image, are_images, is_video
|
||||
|
||||
|
||||
def test_is_file() -> None:
|
||||
assert is_file('.assets/examples/source.jpg') is True
|
||||
assert is_file('.assets/examples') is False
|
||||
assert is_file('invalid') is False
|
||||
|
||||
|
||||
def test_is_directory() -> None:
|
||||
assert is_directory('.assets/examples') is True
|
||||
assert is_directory('.assets/examples/source.jpg') is False
|
||||
assert is_directory('invalid') is False
|
||||
|
||||
|
||||
def test_is_image() -> None:
|
||||
assert is_image('.assets/examples/source.jpg') is True
|
||||
assert is_image('.assets/examples/target-240p.mp4') is False
|
||||
assert is_image('invalid') is False
|
||||
|
||||
|
||||
def test_are_images() -> None:
|
||||
assert are_images([ '.assets/examples/source.jpg' ]) is True
|
||||
assert are_images([ '.assets/examples/source.jpg', '.assets/examples/target-240p.mp4' ]) is False
|
||||
assert are_images([ 'invalid' ]) is False
|
||||
|
||||
|
||||
def test_is_video() -> None:
|
||||
assert is_video('.assets/examples/target-240p.mp4') is True
|
||||
assert is_video('.assets/examples/source.jpg') is False
|
||||
assert is_video('invalid') is False
|
25
tests/test_normalizer.py
Normal file
25
tests/test_normalizer.py
Normal file
@ -0,0 +1,25 @@
|
||||
import platform
|
||||
|
||||
from facefusion.normalizer import normalize_output_path, normalize_padding
|
||||
|
||||
|
||||
def test_normalize_output_path() -> None:
|
||||
if platform.system().lower() != 'windows':
|
||||
assert normalize_output_path([ '.assets/examples/source.jpg' ], None, '.assets/examples/target-240p.mp4') == '.assets/examples/target-240p.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples/target-240p.mp4') == '.assets/examples/target-240p.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples') == '.assets/examples/target-240p.mp4'
|
||||
assert normalize_output_path([ '.assets/examples/source.jpg' ], '.assets/examples/target-240p.mp4', '.assets/examples') == '.assets/examples/source-target-240p.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples/output.mp4') == '.assets/examples/output.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/output.mov') == '.assets/output.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples/invalid') is None
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/invalid/output.mp4') is None
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', 'invalid') is None
|
||||
assert normalize_output_path([ '.assets/examples/source.jpg' ], '.assets/examples/target-240p.mp4', None) is None
|
||||
|
||||
|
||||
def test_normalize_padding() -> None:
|
||||
assert normalize_padding([ 0, 0, 0, 0 ]) == (0, 0, 0, 0)
|
||||
assert normalize_padding([ 1 ]) == (1, 1, 1, 1)
|
||||
assert normalize_padding([ 1, 2 ]) == (1, 2, 1, 2)
|
||||
assert normalize_padding([ 1, 2, 3 ]) == (1, 2, 3, 2)
|
||||
assert normalize_padding(None) is None
|
@ -1,169 +0,0 @@
|
||||
import glob
|
||||
import platform
|
||||
import subprocess
|
||||
import pytest
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion.utilities import conditional_download, extract_frames, create_temp, get_temp_directory_path, clear_temp, normalize_output_path, normalize_padding, is_file, is_directory, is_image, is_video, get_download_size, is_download_done, encode_execution_providers, decode_execution_providers
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
def before_all() -> None:
|
||||
facefusion.globals.temp_frame_quality = 100
|
||||
facefusion.globals.trim_frame_start = None
|
||||
facefusion.globals.trim_frame_end = None
|
||||
facefusion.globals.temp_frame_format = 'png'
|
||||
conditional_download('.assets/examples',
|
||||
[
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples/source.jpg',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4'
|
||||
])
|
||||
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=25', '.assets/examples/target-240p-25fps.mp4' ])
|
||||
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=30', '.assets/examples/target-240p-30fps.mp4' ])
|
||||
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=60', '.assets/examples/target-240p-60fps.mp4' ])
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'function', autouse = True)
|
||||
def before_each() -> None:
|
||||
facefusion.globals.trim_frame_start = None
|
||||
facefusion.globals.trim_frame_end = None
|
||||
facefusion.globals.temp_frame_quality = 90
|
||||
facefusion.globals.temp_frame_format = 'jpg'
|
||||
|
||||
|
||||
def test_extract_frames() -> None:
|
||||
target_paths =\
|
||||
[
|
||||
'.assets/examples/target-240p-25fps.mp4',
|
||||
'.assets/examples/target-240p-30fps.mp4',
|
||||
'.assets/examples/target-240p-60fps.mp4'
|
||||
]
|
||||
for target_path in target_paths:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == 324
|
||||
|
||||
clear_temp(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_start() -> None:
|
||||
facefusion.globals.trim_frame_start = 224
|
||||
data_provider =\
|
||||
[
|
||||
('.assets/examples/target-240p-25fps.mp4', 55),
|
||||
('.assets/examples/target-240p-30fps.mp4', 100),
|
||||
('.assets/examples/target-240p-60fps.mp4', 212)
|
||||
]
|
||||
for target_path, frame_total in data_provider:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_start_and_trim_end() -> None:
|
||||
facefusion.globals.trim_frame_start = 124
|
||||
facefusion.globals.trim_frame_end = 224
|
||||
data_provider =\
|
||||
[
|
||||
('.assets/examples/target-240p-25fps.mp4', 120),
|
||||
('.assets/examples/target-240p-30fps.mp4', 100),
|
||||
('.assets/examples/target-240p-60fps.mp4', 50)
|
||||
]
|
||||
for target_path, frame_total in data_provider:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_end() -> None:
|
||||
facefusion.globals.trim_frame_end = 100
|
||||
data_provider =\
|
||||
[
|
||||
('.assets/examples/target-240p-25fps.mp4', 120),
|
||||
('.assets/examples/target-240p-30fps.mp4', 100),
|
||||
('.assets/examples/target-240p-60fps.mp4', 50)
|
||||
]
|
||||
for target_path, frame_total in data_provider:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp(target_path)
|
||||
|
||||
assert extract_frames(target_path, 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp(target_path)
|
||||
|
||||
|
||||
def test_normalize_output_path() -> None:
|
||||
if platform.system().lower() != 'windows':
|
||||
assert normalize_output_path('.assets/examples/source.jpg', None, '.assets/examples/target-240p.mp4') == '.assets/examples/target-240p.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples/target-240p.mp4') == '.assets/examples/target-240p.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples') == '.assets/examples/target-240p.mp4'
|
||||
assert normalize_output_path('.assets/examples/source.jpg', '.assets/examples/target-240p.mp4', '.assets/examples') == '.assets/examples/source-target-240p.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples/output.mp4') == '.assets/examples/output.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/output.mov') == '.assets/output.mp4'
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/examples/invalid') is None
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', '.assets/invalid/output.mp4') is None
|
||||
assert normalize_output_path(None, '.assets/examples/target-240p.mp4', 'invalid') is None
|
||||
assert normalize_output_path('.assets/examples/source.jpg', '.assets/examples/target-240p.mp4', None) is None
|
||||
|
||||
|
||||
def test_normalize_padding() -> None:
|
||||
assert normalize_padding([ 0, 0, 0, 0 ]) == (0, 0, 0, 0)
|
||||
assert normalize_padding([ 1 ]) == (1, 1, 1, 1)
|
||||
assert normalize_padding([ 1, 2 ]) == (1, 2, 1, 2)
|
||||
assert normalize_padding([ 1, 2, 3 ]) == (1, 2, 3, 2)
|
||||
assert normalize_padding(None) is None
|
||||
|
||||
|
||||
def test_is_file() -> None:
|
||||
assert is_file('.assets/examples/source.jpg') is True
|
||||
assert is_file('.assets/examples') is False
|
||||
assert is_file('invalid') is False
|
||||
|
||||
|
||||
def test_is_directory() -> None:
|
||||
assert is_directory('.assets/examples') is True
|
||||
assert is_directory('.assets/examples/source.jpg') is False
|
||||
assert is_directory('invalid') is False
|
||||
|
||||
|
||||
def test_is_image() -> None:
|
||||
assert is_image('.assets/examples/source.jpg') is True
|
||||
assert is_image('.assets/examples/target-240p.mp4') is False
|
||||
assert is_image('invalid') is False
|
||||
|
||||
|
||||
def test_is_video() -> None:
|
||||
assert is_video('.assets/examples/target-240p.mp4') is True
|
||||
assert is_video('.assets/examples/source.jpg') is False
|
||||
assert is_video('invalid') is False
|
||||
|
||||
|
||||
def test_get_download_size() -> None:
|
||||
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4') == 191675
|
||||
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-360p.mp4') == 370732
|
||||
assert get_download_size('invalid') == 0
|
||||
|
||||
|
||||
def test_is_download_done() -> None:
|
||||
assert is_download_done('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4', '.assets/examples/target-240p.mp4') is True
|
||||
assert is_download_done('https://github.com/facefusion/facefusion-assets/releases/download/examples/target-240p.mp4','invalid') is False
|
||||
assert is_download_done('invalid', 'invalid') is False
|
||||
|
||||
|
||||
def test_encode_execution_providers() -> None:
|
||||
assert encode_execution_providers([ 'CPUExecutionProvider' ]) == [ 'cpu' ]
|
||||
|
||||
|
||||
def test_decode_execution_providers() -> None:
|
||||
assert decode_execution_providers([ 'cpu' ]) == [ 'CPUExecutionProvider' ]
|
@ -1,17 +1,12 @@
|
||||
import subprocess
|
||||
import pytest
|
||||
|
||||
import facefusion.globals
|
||||
from facefusion.utilities import conditional_download
|
||||
from facefusion.download import conditional_download
|
||||
from facefusion.vision import get_video_frame, detect_fps, count_video_frame_total
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
def before_all() -> None:
|
||||
facefusion.globals.temp_frame_quality = 100
|
||||
facefusion.globals.trim_frame_start = None
|
||||
facefusion.globals.trim_frame_end = None
|
||||
facefusion.globals.temp_frame_format = 'png'
|
||||
conditional_download('.assets/examples',
|
||||
[
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples/source.jpg',
|
||||
@ -22,14 +17,6 @@ def before_all() -> None:
|
||||
subprocess.run([ 'ffmpeg', '-i', '.assets/examples/target-240p.mp4', '-vf', 'fps=60', '.assets/examples/target-240p-60fps.mp4' ])
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'function', autouse = True)
|
||||
def before_each() -> None:
|
||||
facefusion.globals.trim_frame_start = None
|
||||
facefusion.globals.trim_frame_end = None
|
||||
facefusion.globals.temp_frame_quality = 90
|
||||
facefusion.globals.temp_frame_format = 'jpg'
|
||||
|
||||
|
||||
def test_get_video_frame() -> None:
|
||||
assert get_video_frame('.assets/examples/target-240p-25fps.mp4') is not None
|
||||
assert get_video_frame('invalid') is None
|
||||
|
Loading…
Reference in New Issue
Block a user