3.1.0 (#839)
* Replace audio whenever set via source * add H264_qsv&HEVC_qsv (#768) * Update ffmpeg.py * Update choices.py * Update typing.py * Fix spaces and newlines * Fix return type * Introduce hififace swapper * Disable stream for expression restorer * Webcam polishing part1 (#796) * Cosmetics on ignore comments * Testing for replace audio * Testing for restore audio * Testing for restore audio * Fix replace_audio() * Remove shortest and use fixed video duration * Remove shortest and use fixed video duration * Prevent duplicate entries to local PATH * Do hard exit on invalid args * Need for Python 3.10 * Fix state of face selector * Fix OpenVINO by aliasing GPU.0 to GPU * Fix OpenVINO by aliasing GPU.0 to GPU * Fix/age modifier styleganex 512 (#798) * fix * styleganex template * changes * changes * fix occlusion mask * add age modifier scale * change * change * hardcode * Cleanup * Use model_sizes and model_templates variables * No need for prepare when just 2 lines of code * Someone used spaces over tabs * Revert back [0][0] --------- Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> * Feat/update gradio5 (#799) * Update to Gradio 5 * Remove overrides for Gradio * Fix dark mode for Gradio * Polish errors * More styles for tabs and co * Make slider inputs and reset like a unit * Make slider inputs and reset like a unit * Adjust naming * Improved color matching (#800) * aura fix * fix import * move to vision.py * changes * changes * changes * changes * further reduction * add test * better test * change name * Minor cleanup * Minor cleanup * Minor cleanup * changes (#801) * Switch to official assets repo * Add __pycache__ to gitignore * Gradio pinned python-multipart to 0.0.12 * Update dependencies * Feat/temp path second try (#802) * Terminate base directory from temp helper * Partial adjust program codebase * Move arguments around * Make `-j` absolete * Resolve args * Fix job register keys * Adjust date test * Finalize temp path * Update onnxruntime * Update dependencies * Adjust color for checkboxes * Revert due terrible performance * Fix/enforce vp9 for webm (#805) * Simple fix to enforce vp9 for webm * Remove suggest methods from program helper * Cleanup ffmpeg.py a bit * Update onnxruntime (second try) * Update onnxruntime (second try) * Remove cudnn_conv_algo_search tweaks * Remove cudnn_conv_algo_search tweaks * changes * add both mask instead of multiply * adaptive color correction * changes * remove model size requirement * changes * add to facefusion.ini * changes * changes * changes * Add namespace for dfm creators * Release five frame enhancer models * Remove vendor from model name * Remove vendor from model name * changes * changes * changes * changes * Feat/download providers (#809) * Introduce download providers * update processors download method * add ui * Fix CI * Adjust UI component order, Use download resolver for benchmark * Remove is_download_done() * Introduce download provider set, Remove choices method from execution, cast all dict keys() via list() * Fix spacing --------- Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> * Fix model paths for 3.1.0 * Introduce bulk-run (#810) * Introduce bulk-run * Make bulk run bullet proof * Integration test for bulk-run * new alignment * Add safer global named resolve_file_pattern() (#811) * Allow bulk runner with target pattern only * changes * changes * Update Python to 3.12 for CI (#813) * changes * Improve NVIDIA device lookups * Rename template key to deepfacelive * Fix name * Improve resolve download * Rename bulk-run to batch-run * Make deep swapper inputs universal * Add more deepfacelive models * Use different morph value * Feat/simplify hashes sources download (#814) * Extract download directory path from assets path * Fix lint * Fix force-download command, Fix urls in frame enhancer * changes * fix warp_face_by_bounding_box dtype error * DFM Morph (#816) * changes * Improve wording, Replace [None], SideQuest: clean forward() of age modifier * SideQuest: clean forward() of face enhancer --------- Co-authored-by: henryruhs <info@henryruhs.com> * Fix preview refresh after slide * Add more deepfacelive models (#817) * Add more deepfacelive models * Add more deepfacelive models * Fix deep swapper sizes * Kill accent colors, Number input styles for Chrome * Simplify thumbnail-item looks * Fix first black screen * Introduce model helper * ci.yml: Add macOS on ARM64 to the testing (#818) * ci.yml: Add macOS on ARM64 to the testing * ci.yml: uses: AnimMouse/setup-ffmpeg@v1 * ci.yml: strategy: matrix: os: macos-latest, * - name: Set up FFmpeg * Update .github/workflows/ci.yml * Update ci.yml --------- Co-authored-by: Henry Ruhs <info@henryruhs.com> * Show/hide morph slider for deep swapper (#822) * remove dfl_head and update dfl_whole_face template * Add deep swapper models by Mats * Add deep swapper models by Druuzil * Add deep swapper models by Rumateus * Implement face enhancer weight for codeformer, Side Quest: has proces… (#823) * Implement face enhancer weight for codeformer, Side Quest: has processor checks * Fix typo * Fix face enhancer blend in UI * Use static model set creation * Add deep swapper models by Jen * Introduce create_static_model_set() everywhere (#824) * Move clear over to the UI (#825) * Fix model key * Undo restore_audio() * Switch to latest XSeg * Switch to latest XSeg * Switch to latest XSeg * Use resolve_download_url() everywhere, Vanish --skip-download flag * Fix resolve_download_url * Fix space * Kill resolve_execution_provider_keys() and move fallbacks where they belong * Kill resolve_execution_provider_keys() and move fallbacks where they belong * Remove as this does not work * Change TempFrameFormat order * Fix CoreML partially * Remove duplicates (Rumateus is the creator) * Add deep swapper models by Edel * Introduce download scopes (#826) * Introduce download scopes * Limit download scopes to force-download command * Change source-paths behaviour * Fix space * Update README * Rename create_log_level_program to create_misc_program * Fix wording * Fix wording * Update dependencies * Use tolerant for video_memory_strategy in benchmark * Feat/ffmpeg with progress (#827) * FFmpeg with progress bar * Fix typing * FFmpeg with progress bar part2 * Restore streaming wording * Change order in choices and typing * Introduce File using list_directory() (#830) * Feat/local deep swapper models (#832) * Local model support for deep swapper * Local model support for deep swapper part2 * Local model support for deep swapper part3 * Update yet another dfm by Druuzil * Refactor/choices and naming (#833) * Refactor choices, imports and naming * Refactor choices, imports and naming * Fix styles for tabs, Restore toast * Update yet another dfm by Druuzil * Feat/face masker models (#834) * Introduce face masker models * Introduce face masker models * Introduce face masker models * Register needed step keys * Provide different XSeg models * Simplify model context * Fix out of range for trim frame, Fix ffmpeg extraction count (#836) * Fix out of range for trim frame, Fix ffmpeg extraction count * Move restrict of trim frame to the core, Make sure all values are within the range * Fix and merge testing * Fix typing * Add region mask for deep swapper * Adjust wording * Move FACE_MASK_REGIONS to choices * Update dependencies * Feat/download provider fallback (#837) * Introduce download providers fallback, Use CURL everywhre * Fix CI * Use readlines() over readline() to avoid while * Use readlines() over readline() to avoid while * Use readlines() over readline() to avoid while * Use communicate() over wait() * Minor updates for testing * Stop webcam on source image change * Feat/webcam improvements (#838) * Detect available webcams * Fix CI, Move webcam id dropdown to the sidebar, Disable warnings * Fix CI * Remove signal on hard_exit() to prevent exceptions * Fix border color in toast timer * Prepare release * Update preview * Update preview * Hotfix progress bar --------- Co-authored-by: DDXDB <38449595+DDXDB@users.noreply.github.com> Co-authored-by: harisreedhar <h4harisreedhar.s.s@gmail.com> Co-authored-by: Harisreedhar <46858047+harisreedhar@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
ec12f679bf
commit
7a09479fb5
BIN
.github/preview.png
vendored
BIN
.github/preview.png
vendored
Binary file not shown.
Before Width: | Height: | Size: 1.2 MiB After Width: | Height: | Size: 1.3 MiB |
16
.github/workflows/ci.yml
vendored
16
.github/workflows/ci.yml
vendored
@ -8,10 +8,10 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python 3.10
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
python-version: '3.12'
|
||||
- run: pip install flake8
|
||||
- run: pip install flake8-import-order
|
||||
- run: pip install mypy
|
||||
@ -22,17 +22,17 @@ jobs:
|
||||
test:
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ macos-13, ubuntu-latest, windows-latest ]
|
||||
os: [ macos-latest, ubuntu-latest, windows-latest ]
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up FFmpeg
|
||||
uses: FedericoCarboni/setup-ffmpeg@v3
|
||||
- name: Set up Python 3.10
|
||||
uses: AnimMouse/setup-ffmpeg@v1
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
python-version: '3.12'
|
||||
- run: python install.py --onnxruntime default --skip-conda
|
||||
- run: pip install pytest
|
||||
- run: pytest
|
||||
@ -44,10 +44,10 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up FFmpeg
|
||||
uses: FedericoCarboni/setup-ffmpeg@v3
|
||||
- name: Set up Python 3.10
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
python-version: '3.12'
|
||||
- run: python install.py --onnxruntime default --skip-conda
|
||||
- run: pip install coveralls
|
||||
- run: pip install pytest
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,3 +1,4 @@
|
||||
__pycache__
|
||||
.assets
|
||||
.caches
|
||||
.jobs
|
||||
|
@ -35,6 +35,7 @@ options:
|
||||
commands:
|
||||
run run the program
|
||||
headless-run run the program in headless mode
|
||||
batch-run run the program in batch mode
|
||||
force-download force automate downloads and exit
|
||||
job-list list jobs by status
|
||||
job-create create a drafted job
|
||||
|
@ -1,9 +1,15 @@
|
||||
[paths]
|
||||
temp_path =
|
||||
jobs_path =
|
||||
source_paths =
|
||||
target_path =
|
||||
output_path =
|
||||
|
||||
[patterns]
|
||||
source_pattern =
|
||||
target_pattern =
|
||||
output_pattern =
|
||||
|
||||
[face_detector]
|
||||
face_detector_model =
|
||||
face_detector_size =
|
||||
@ -26,6 +32,8 @@ reference_face_distance =
|
||||
reference_frame_number =
|
||||
|
||||
[face_masker]
|
||||
face_occluder_model =
|
||||
face_parser_model =
|
||||
face_mask_types =
|
||||
face_mask_blur =
|
||||
face_mask_padding =
|
||||
@ -52,6 +60,8 @@ skip_audio =
|
||||
processors =
|
||||
age_modifier_model =
|
||||
age_modifier_direction =
|
||||
deep_swapper_model =
|
||||
deep_swapper_morph =
|
||||
expression_restorer_model =
|
||||
expression_restorer_factor =
|
||||
face_debugger_items =
|
||||
@ -72,6 +82,7 @@ face_editor_head_yaw =
|
||||
face_editor_head_roll =
|
||||
face_enhancer_model =
|
||||
face_enhancer_blend =
|
||||
face_enhancer_weight =
|
||||
face_swapper_model =
|
||||
face_swapper_pixel_boost =
|
||||
frame_colorizer_model =
|
||||
@ -92,10 +103,13 @@ execution_providers =
|
||||
execution_thread_count =
|
||||
execution_queue_count =
|
||||
|
||||
[download]
|
||||
download_providers =
|
||||
download_scope =
|
||||
|
||||
[memory]
|
||||
video_memory_strategy =
|
||||
system_memory_limit =
|
||||
|
||||
[misc]
|
||||
skip_download =
|
||||
log_level =
|
||||
|
@ -15,6 +15,14 @@ def reduce_step_args(args : Args) -> Args:
|
||||
return step_args
|
||||
|
||||
|
||||
def reduce_job_args(args : Args) -> Args:
|
||||
job_args =\
|
||||
{
|
||||
key: args[key] for key in args if key in job_store.get_job_keys()
|
||||
}
|
||||
return job_args
|
||||
|
||||
|
||||
def collect_step_args() -> Args:
|
||||
step_args =\
|
||||
{
|
||||
@ -35,10 +43,15 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
# general
|
||||
apply_state_item('command', args.get('command'))
|
||||
# paths
|
||||
apply_state_item('temp_path', args.get('temp_path'))
|
||||
apply_state_item('jobs_path', args.get('jobs_path'))
|
||||
apply_state_item('source_paths', args.get('source_paths'))
|
||||
apply_state_item('target_path', args.get('target_path'))
|
||||
apply_state_item('output_path', args.get('output_path'))
|
||||
# patterns
|
||||
apply_state_item('source_pattern', args.get('source_pattern'))
|
||||
apply_state_item('target_pattern', args.get('target_pattern'))
|
||||
apply_state_item('output_pattern', args.get('output_pattern'))
|
||||
# face detector
|
||||
apply_state_item('face_detector_model', args.get('face_detector_model'))
|
||||
apply_state_item('face_detector_size', args.get('face_detector_size'))
|
||||
@ -48,16 +61,18 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
apply_state_item('face_landmarker_model', args.get('face_landmarker_model'))
|
||||
apply_state_item('face_landmarker_score', args.get('face_landmarker_score'))
|
||||
# face selector
|
||||
state_manager.init_item('face_selector_mode', args.get('face_selector_mode'))
|
||||
state_manager.init_item('face_selector_order', args.get('face_selector_order'))
|
||||
state_manager.init_item('face_selector_age_start', args.get('face_selector_age_start'))
|
||||
state_manager.init_item('face_selector_age_end', args.get('face_selector_age_end'))
|
||||
state_manager.init_item('face_selector_gender', args.get('face_selector_gender'))
|
||||
state_manager.init_item('face_selector_race', args.get('face_selector_race'))
|
||||
state_manager.init_item('reference_face_position', args.get('reference_face_position'))
|
||||
state_manager.init_item('reference_face_distance', args.get('reference_face_distance'))
|
||||
state_manager.init_item('reference_frame_number', args.get('reference_frame_number'))
|
||||
apply_state_item('face_selector_mode', args.get('face_selector_mode'))
|
||||
apply_state_item('face_selector_order', args.get('face_selector_order'))
|
||||
apply_state_item('face_selector_age_start', args.get('face_selector_age_start'))
|
||||
apply_state_item('face_selector_age_end', args.get('face_selector_age_end'))
|
||||
apply_state_item('face_selector_gender', args.get('face_selector_gender'))
|
||||
apply_state_item('face_selector_race', args.get('face_selector_race'))
|
||||
apply_state_item('reference_face_position', args.get('reference_face_position'))
|
||||
apply_state_item('reference_face_distance', args.get('reference_face_distance'))
|
||||
apply_state_item('reference_frame_number', args.get('reference_frame_number'))
|
||||
# face masker
|
||||
apply_state_item('face_occluder_model', args.get('face_occluder_model'))
|
||||
apply_state_item('face_parser_model', args.get('face_parser_model'))
|
||||
apply_state_item('face_mask_types', args.get('face_mask_types'))
|
||||
apply_state_item('face_mask_blur', args.get('face_mask_blur'))
|
||||
apply_state_item('face_mask_padding', normalize_padding(args.get('face_mask_padding')))
|
||||
@ -92,7 +107,7 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
apply_state_item('output_video_fps', output_video_fps)
|
||||
apply_state_item('skip_audio', args.get('skip_audio'))
|
||||
# processors
|
||||
available_processors = list_directory('facefusion/processors/modules')
|
||||
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
|
||||
apply_state_item('processors', args.get('processors'))
|
||||
for processor_module in get_processors_modules(available_processors):
|
||||
processor_module.apply_args(args, apply_state_item)
|
||||
@ -105,11 +120,13 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
apply_state_item('execution_providers', args.get('execution_providers'))
|
||||
apply_state_item('execution_thread_count', args.get('execution_thread_count'))
|
||||
apply_state_item('execution_queue_count', args.get('execution_queue_count'))
|
||||
# download
|
||||
apply_state_item('download_providers', args.get('download_providers'))
|
||||
apply_state_item('download_scope', args.get('download_scope'))
|
||||
# memory
|
||||
apply_state_item('video_memory_strategy', args.get('video_memory_strategy'))
|
||||
apply_state_item('system_memory_limit', args.get('system_memory_limit'))
|
||||
# misc
|
||||
apply_state_item('skip_download', args.get('skip_download'))
|
||||
apply_state_item('log_level', args.get('log_level'))
|
||||
# jobs
|
||||
apply_state_item('job_id', args.get('job_id'))
|
||||
|
@ -2,9 +2,7 @@ import logging
|
||||
from typing import List, Sequence
|
||||
|
||||
from facefusion.common_helper import create_float_range, create_int_range
|
||||
from facefusion.typing import Angle, ExecutionProviderSet, FaceDetectorSet, FaceLandmarkerModel, FaceMaskRegion, FaceMaskType, FaceSelectorMode, FaceSelectorOrder, Gender, JobStatus, LogLevelSet, OutputAudioEncoder, OutputVideoEncoder, OutputVideoPreset, Race, Score, TempFrameFormat, UiWorkflow, VideoMemoryStrategy
|
||||
|
||||
video_memory_strategies : List[VideoMemoryStrategy] = [ 'strict', 'moderate', 'tolerant' ]
|
||||
from facefusion.typing import Angle, DownloadProvider, DownloadProviderSet, DownloadScope, ExecutionProvider, ExecutionProviderSet, FaceDetectorModel, FaceDetectorSet, FaceLandmarkerModel, FaceMaskRegion, FaceMaskRegionSet, FaceMaskType, FaceOccluderModel, FaceParserModel, FaceSelectorMode, FaceSelectorOrder, Gender, JobStatus, LogLevel, LogLevelSet, OutputAudioEncoder, OutputVideoEncoder, OutputVideoPreset, Race, Score, TempFrameFormat, UiWorkflow, VideoMemoryStrategy
|
||||
|
||||
face_detector_set : FaceDetectorSet =\
|
||||
{
|
||||
@ -13,29 +11,37 @@ face_detector_set : FaceDetectorSet =\
|
||||
'scrfd': [ '160x160', '320x320', '480x480', '512x512', '640x640' ],
|
||||
'yoloface': [ '640x640' ]
|
||||
}
|
||||
face_detector_models : List[FaceDetectorModel] = list(face_detector_set.keys())
|
||||
face_landmarker_models : List[FaceLandmarkerModel] = [ 'many', '2dfan4', 'peppa_wutz' ]
|
||||
face_selector_modes : List[FaceSelectorMode] = [ 'many', 'one', 'reference' ]
|
||||
face_selector_orders : List[FaceSelectorOrder] = [ 'left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best' ]
|
||||
face_selector_genders : List[Gender] = ['female', 'male']
|
||||
face_selector_races : List[Race] = ['white', 'black', 'latino', 'asian', 'indian', 'arabic']
|
||||
face_selector_genders : List[Gender] = [ 'female', 'male' ]
|
||||
face_selector_races : List[Race] = [ 'white', 'black', 'latino', 'asian', 'indian', 'arabic' ]
|
||||
face_occluder_models : List[FaceOccluderModel] = [ 'xseg_1', 'xseg_2' ]
|
||||
face_parser_models : List[FaceParserModel] = [ 'bisenet_resnet_18', 'bisenet_resnet_34' ]
|
||||
face_mask_types : List[FaceMaskType] = [ 'box', 'occlusion', 'region' ]
|
||||
face_mask_regions : List[FaceMaskRegion] = [ 'skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip' ]
|
||||
face_mask_region_set : FaceMaskRegionSet =\
|
||||
{
|
||||
'skin': 1,
|
||||
'left-eyebrow': 2,
|
||||
'right-eyebrow': 3,
|
||||
'left-eye': 4,
|
||||
'right-eye': 5,
|
||||
'glasses': 6,
|
||||
'nose': 10,
|
||||
'mouth': 11,
|
||||
'upper-lip': 12,
|
||||
'lower-lip': 13
|
||||
}
|
||||
face_mask_regions : List[FaceMaskRegion] = list(face_mask_region_set.keys())
|
||||
temp_frame_formats : List[TempFrameFormat] = [ 'bmp', 'jpg', 'png' ]
|
||||
output_audio_encoders : List[OutputAudioEncoder] = [ 'aac', 'libmp3lame', 'libopus', 'libvorbis' ]
|
||||
output_video_encoders : List[OutputVideoEncoder] = [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf', 'h264_videotoolbox', 'hevc_videotoolbox' ]
|
||||
output_video_encoders : List[OutputVideoEncoder] = [ 'libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf', 'h264_qsv', 'hevc_qsv', 'h264_videotoolbox', 'hevc_videotoolbox' ]
|
||||
output_video_presets : List[OutputVideoPreset] = [ 'ultrafast', 'superfast', 'veryfast', 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow' ]
|
||||
|
||||
image_template_sizes : List[float] = [ 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4 ]
|
||||
video_template_sizes : List[int] = [ 240, 360, 480, 540, 720, 1080, 1440, 2160, 4320 ]
|
||||
|
||||
log_level_set : LogLevelSet =\
|
||||
{
|
||||
'error': logging.ERROR,
|
||||
'warn': logging.WARNING,
|
||||
'info': logging.INFO,
|
||||
'debug': logging.DEBUG
|
||||
}
|
||||
|
||||
execution_provider_set : ExecutionProviderSet =\
|
||||
{
|
||||
'cpu': 'CPUExecutionProvider',
|
||||
@ -46,6 +52,33 @@ execution_provider_set : ExecutionProviderSet =\
|
||||
'rocm': 'ROCMExecutionProvider',
|
||||
'tensorrt': 'TensorrtExecutionProvider'
|
||||
}
|
||||
execution_providers : List[ExecutionProvider] = list(execution_provider_set.keys())
|
||||
download_provider_set : DownloadProviderSet =\
|
||||
{
|
||||
'github':
|
||||
{
|
||||
'url': 'https://github.com',
|
||||
'path': '/facefusion/facefusion-assets/releases/download/{base_name}/{file_name}'
|
||||
},
|
||||
'huggingface':
|
||||
{
|
||||
'url': 'https://huggingface.co',
|
||||
'path': '/facefusion/{base_name}/resolve/main/{file_name}'
|
||||
}
|
||||
}
|
||||
download_providers : List[DownloadProvider] = list(download_provider_set.keys())
|
||||
download_scopes : List[DownloadScope] = [ 'lite', 'full' ]
|
||||
|
||||
video_memory_strategies : List[VideoMemoryStrategy] = [ 'strict', 'moderate', 'tolerant' ]
|
||||
|
||||
log_level_set : LogLevelSet =\
|
||||
{
|
||||
'error': logging.ERROR,
|
||||
'warn': logging.WARNING,
|
||||
'info': logging.INFO,
|
||||
'debug': logging.DEBUG
|
||||
}
|
||||
log_levels : List[LogLevel] = list(log_level_set.keys())
|
||||
|
||||
ui_workflows : List[UiWorkflow] = [ 'instant_runner', 'job_runner', 'job_manager' ]
|
||||
job_statuses : List[JobStatus] = [ 'drafted', 'queued', 'completed', 'failed' ]
|
||||
|
@ -5,21 +5,28 @@ import numpy
|
||||
from tqdm import tqdm
|
||||
|
||||
from facefusion import inference_manager, state_manager, wording
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import Fps, InferencePool, ModelOptions, ModelSet, VisionFrame
|
||||
from facefusion.vision import count_video_frame_total, detect_video_fps, get_video_frame, read_image
|
||||
from facefusion.typing import DownloadScope, Fps, InferencePool, ModelOptions, ModelSet, VisionFrame
|
||||
from facefusion.vision import detect_video_fps, get_video_frame, read_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
PROBABILITY_LIMIT = 0.80
|
||||
RATE_LIMIT = 10
|
||||
STREAM_COUNTER = 0
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'open_nsfw':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'content_analyser':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/open_nsfw.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'open_nsfw.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/open_nsfw.hash')
|
||||
}
|
||||
},
|
||||
@ -27,17 +34,14 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'content_analyser':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/open_nsfw.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'open_nsfw.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/open_nsfw.onnx')
|
||||
}
|
||||
},
|
||||
'size': (224, 224),
|
||||
'mean': [ 104, 117, 123 ]
|
||||
}
|
||||
}
|
||||
PROBABILITY_LIMIT = 0.80
|
||||
RATE_LIMIT = 10
|
||||
STREAM_COUNTER = 0
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
@ -50,15 +54,14 @@ def clear_inference_pool() -> None:
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
return MODEL_SET.get('open_nsfw')
|
||||
return create_static_model_set('full').get('open_nsfw')
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool:
|
||||
@ -100,23 +103,22 @@ def prepare_frame(vision_frame : VisionFrame) -> VisionFrame:
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def analyse_image(image_path : str) -> bool:
|
||||
frame = read_image(image_path)
|
||||
return analyse_frame(frame)
|
||||
vision_frame = read_image(image_path)
|
||||
return analyse_frame(vision_frame)
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def analyse_video(video_path : str, start_frame : int, end_frame : int) -> bool:
|
||||
video_frame_total = count_video_frame_total(video_path)
|
||||
def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool:
|
||||
video_fps = detect_video_fps(video_path)
|
||||
frame_range = range(start_frame or 0, end_frame or video_frame_total)
|
||||
frame_range = range(trim_frame_start, trim_frame_end)
|
||||
rate = 0.0
|
||||
counter = 0
|
||||
|
||||
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
|
||||
for frame_number in frame_range:
|
||||
if frame_number % int(video_fps) == 0:
|
||||
frame = get_video_frame(video_path, frame_number)
|
||||
if analyse_frame(frame):
|
||||
vision_frame = get_video_frame(video_path, frame_number)
|
||||
if analyse_frame(vision_frame):
|
||||
counter += 1
|
||||
rate = counter * int(video_fps) / len(frame_range) * 100
|
||||
progress.update()
|
||||
|
@ -1,3 +1,4 @@
|
||||
import itertools
|
||||
import shutil
|
||||
import signal
|
||||
import sys
|
||||
@ -6,7 +7,7 @@ from time import time
|
||||
import numpy
|
||||
|
||||
from facefusion import content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, logger, process_manager, state_manager, voice_extractor, wording
|
||||
from facefusion.args import apply_args, collect_job_args, reduce_step_args
|
||||
from facefusion.args import apply_args, collect_job_args, reduce_job_args, reduce_step_args
|
||||
from facefusion.common_helper import get_first
|
||||
from facefusion.content_analyser import analyse_image, analyse_video
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
@ -15,7 +16,7 @@ from facefusion.face_analyser import get_average_face, get_many_faces, get_one_f
|
||||
from facefusion.face_selector import sort_and_filter_faces
|
||||
from facefusion.face_store import append_reference_face, clear_reference_faces, get_reference_faces
|
||||
from facefusion.ffmpeg import copy_image, extract_frames, finalize_image, merge_video, replace_audio, restore_audio
|
||||
from facefusion.filesystem import filter_audio_paths, is_image, is_video, list_directory, resolve_relative_path
|
||||
from facefusion.filesystem import filter_audio_paths, is_image, is_video, list_directory, resolve_file_pattern
|
||||
from facefusion.jobs import job_helper, job_manager, job_runner
|
||||
from facefusion.jobs.job_list import compose_job_list
|
||||
from facefusion.memory import limit_system_memory
|
||||
@ -25,7 +26,7 @@ from facefusion.program_helper import validate_args
|
||||
from facefusion.statistics import conditional_log_statistics
|
||||
from facefusion.temp_helper import clear_temp_directory, create_temp_directory, get_temp_file_path, get_temp_frame_paths, move_temp_file
|
||||
from facefusion.typing import Args, ErrorCode
|
||||
from facefusion.vision import get_video_frame, pack_resolution, read_image, read_static_images, restrict_image_resolution, restrict_video_fps, restrict_video_resolution, unpack_resolution
|
||||
from facefusion.vision import get_video_frame, pack_resolution, read_image, read_static_images, restrict_image_resolution, restrict_trim_frame, restrict_video_fps, restrict_video_resolution, unpack_resolution
|
||||
|
||||
|
||||
def cli() -> None:
|
||||
@ -41,6 +42,8 @@ def cli() -> None:
|
||||
route(args)
|
||||
else:
|
||||
program.print_help()
|
||||
else:
|
||||
hard_exit(2)
|
||||
|
||||
|
||||
def route(args : Args) -> None:
|
||||
@ -65,12 +68,18 @@ def route(args : Args) -> None:
|
||||
for ui_layout in ui.get_ui_layouts_modules(state_manager.get_item('ui_layouts')):
|
||||
if not ui_layout.pre_check():
|
||||
return conditional_exit(2)
|
||||
ui.init()
|
||||
ui.launch()
|
||||
if state_manager.get_item('command') == 'headless-run':
|
||||
if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
|
||||
hard_exit(1)
|
||||
error_core = process_headless(args)
|
||||
hard_exit(error_core)
|
||||
if state_manager.get_item('command') == 'batch-run':
|
||||
if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
|
||||
hard_exit(1)
|
||||
error_core = process_batch(args)
|
||||
hard_exit(error_core)
|
||||
if state_manager.get_item('command') in [ 'job-run', 'job-run-all', 'job-retry', 'job-retry-all' ]:
|
||||
if not job_manager.init_jobs(state_manager.get_item('jobs_path')):
|
||||
hard_exit(1)
|
||||
@ -79,8 +88,8 @@ def route(args : Args) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
if sys.version_info < (3, 9):
|
||||
logger.error(wording.get('python_not_supported').format(version = '3.9'), __name__)
|
||||
if sys.version_info < (3, 10):
|
||||
logger.error(wording.get('python_not_supported').format(version = '3.10'), __name__)
|
||||
return False
|
||||
if not shutil.which('curl'):
|
||||
logger.error(wording.get('curl_not_installed'), __name__)
|
||||
@ -92,7 +101,7 @@ def pre_check() -> bool:
|
||||
|
||||
|
||||
def common_pre_check() -> bool:
|
||||
modules =\
|
||||
common_modules =\
|
||||
[
|
||||
content_analyser,
|
||||
face_classifier,
|
||||
@ -103,7 +112,7 @@ def common_pre_check() -> bool:
|
||||
voice_extractor
|
||||
]
|
||||
|
||||
return all(module.pre_check() for module in modules)
|
||||
return all(module.pre_check() for module in common_modules)
|
||||
|
||||
|
||||
def processors_pre_check() -> bool:
|
||||
@ -113,64 +122,28 @@ def processors_pre_check() -> bool:
|
||||
return True
|
||||
|
||||
|
||||
def conditional_process() -> ErrorCode:
|
||||
start_time = time()
|
||||
for processor_module in get_processors_modules(state_manager.get_item('processors')):
|
||||
if not processor_module.pre_process('output'):
|
||||
return 2
|
||||
conditional_append_reference_faces()
|
||||
if is_image(state_manager.get_item('target_path')):
|
||||
return process_image(start_time)
|
||||
if is_video(state_manager.get_item('target_path')):
|
||||
return process_video(start_time)
|
||||
return 0
|
||||
|
||||
|
||||
def conditional_append_reference_faces() -> None:
|
||||
if 'reference' in state_manager.get_item('face_selector_mode') and not get_reference_faces():
|
||||
source_frames = read_static_images(state_manager.get_item('source_paths'))
|
||||
source_faces = get_many_faces(source_frames)
|
||||
source_face = get_average_face(source_faces)
|
||||
if is_video(state_manager.get_item('target_path')):
|
||||
reference_frame = get_video_frame(state_manager.get_item('target_path'), state_manager.get_item('reference_frame_number'))
|
||||
else:
|
||||
reference_frame = read_image(state_manager.get_item('target_path'))
|
||||
reference_faces = sort_and_filter_faces(get_many_faces([ reference_frame ]))
|
||||
reference_face = get_one_face(reference_faces, state_manager.get_item('reference_face_position'))
|
||||
append_reference_face('origin', reference_face)
|
||||
|
||||
if source_face and reference_face:
|
||||
for processor_module in get_processors_modules(state_manager.get_item('processors')):
|
||||
abstract_reference_frame = processor_module.get_reference_frame(source_face, reference_face, reference_frame)
|
||||
if numpy.any(abstract_reference_frame):
|
||||
abstract_reference_faces = sort_and_filter_faces(get_many_faces([ abstract_reference_frame ]))
|
||||
abstract_reference_face = get_one_face(abstract_reference_faces, state_manager.get_item('reference_face_position'))
|
||||
append_reference_face(processor_module.__name__, abstract_reference_face)
|
||||
|
||||
|
||||
def force_download() -> ErrorCode:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
available_processors = list_directory('facefusion/processors/modules')
|
||||
common_modules =\
|
||||
[
|
||||
content_analyser,
|
||||
face_classifier,
|
||||
face_detector,
|
||||
face_landmarker,
|
||||
face_recognizer,
|
||||
face_masker,
|
||||
face_recognizer,
|
||||
voice_extractor
|
||||
]
|
||||
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
|
||||
processor_modules = get_processors_modules(available_processors)
|
||||
|
||||
for module in common_modules + processor_modules:
|
||||
if hasattr(module, 'MODEL_SET'):
|
||||
for model in module.MODEL_SET.values():
|
||||
if hasattr(module, 'create_static_model_set'):
|
||||
for model in module.create_static_model_set(state_manager.get_item('download_scope')).values():
|
||||
model_hashes = model.get('hashes')
|
||||
model_sources = model.get('sources')
|
||||
|
||||
if model_hashes and model_sources:
|
||||
if not conditional_download_hashes(download_directory_path, model_hashes) or not conditional_download_sources(download_directory_path, model_sources):
|
||||
if not conditional_download_hashes(model_hashes) or not conditional_download_sources(model_sources):
|
||||
return 1
|
||||
|
||||
return 0
|
||||
@ -279,6 +252,44 @@ def route_job_runner() -> ErrorCode:
|
||||
return 2
|
||||
|
||||
|
||||
def process_headless(args : Args) -> ErrorCode:
|
||||
job_id = job_helper.suggest_job_id('headless')
|
||||
step_args = reduce_step_args(args)
|
||||
|
||||
if job_manager.create_job(job_id) and job_manager.add_step(job_id, step_args) and job_manager.submit_job(job_id) and job_runner.run_job(job_id, process_step):
|
||||
return 0
|
||||
return 1
|
||||
|
||||
|
||||
def process_batch(args : Args) -> ErrorCode:
|
||||
job_id = job_helper.suggest_job_id('batch')
|
||||
step_args = reduce_step_args(args)
|
||||
job_args = reduce_job_args(args)
|
||||
source_paths = resolve_file_pattern(job_args.get('source_pattern'))
|
||||
target_paths = resolve_file_pattern(job_args.get('target_pattern'))
|
||||
|
||||
if job_manager.create_job(job_id):
|
||||
if source_paths and target_paths:
|
||||
for index, (source_path, target_path) in enumerate(itertools.product(source_paths, target_paths)):
|
||||
step_args['source_paths'] = [ source_path ]
|
||||
step_args['target_path'] = target_path
|
||||
step_args['output_path'] = job_args.get('output_pattern').format(index = index)
|
||||
if not job_manager.add_step(job_id, step_args):
|
||||
return 1
|
||||
if job_manager.submit_job(job_id) and job_runner.run_job(job_id, process_step):
|
||||
return 0
|
||||
|
||||
if not source_paths and target_paths:
|
||||
for index, target_path in enumerate(target_paths):
|
||||
step_args['target_path'] = target_path
|
||||
step_args['output_path'] = job_args.get('output_pattern').format(index = index)
|
||||
if not job_manager.add_step(job_id, step_args):
|
||||
return 1
|
||||
if job_manager.submit_job(job_id) and job_runner.run_job(job_id, process_step):
|
||||
return 0
|
||||
return 1
|
||||
|
||||
|
||||
def process_step(job_id : str, step_index : int, step_args : Args) -> bool:
|
||||
clear_reference_faces()
|
||||
step_total = job_manager.count_step_total(job_id)
|
||||
@ -292,13 +303,39 @@ def process_step(job_id : str, step_index : int, step_args : Args) -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def process_headless(args : Args) -> ErrorCode:
|
||||
job_id = job_helper.suggest_job_id('headless')
|
||||
step_args = reduce_step_args(args)
|
||||
|
||||
if job_manager.create_job(job_id) and job_manager.add_step(job_id, step_args) and job_manager.submit_job(job_id) and job_runner.run_job(job_id, process_step):
|
||||
def conditional_process() -> ErrorCode:
|
||||
start_time = time()
|
||||
for processor_module in get_processors_modules(state_manager.get_item('processors')):
|
||||
if not processor_module.pre_process('output'):
|
||||
return 2
|
||||
conditional_append_reference_faces()
|
||||
if is_image(state_manager.get_item('target_path')):
|
||||
return process_image(start_time)
|
||||
if is_video(state_manager.get_item('target_path')):
|
||||
return process_video(start_time)
|
||||
return 0
|
||||
return 1
|
||||
|
||||
|
||||
def conditional_append_reference_faces() -> None:
|
||||
if 'reference' in state_manager.get_item('face_selector_mode') and not get_reference_faces():
|
||||
source_frames = read_static_images(state_manager.get_item('source_paths'))
|
||||
source_faces = get_many_faces(source_frames)
|
||||
source_face = get_average_face(source_faces)
|
||||
if is_video(state_manager.get_item('target_path')):
|
||||
reference_frame = get_video_frame(state_manager.get_item('target_path'), state_manager.get_item('reference_frame_number'))
|
||||
else:
|
||||
reference_frame = read_image(state_manager.get_item('target_path'))
|
||||
reference_faces = sort_and_filter_faces(get_many_faces([ reference_frame ]))
|
||||
reference_face = get_one_face(reference_faces, state_manager.get_item('reference_face_position'))
|
||||
append_reference_face('origin', reference_face)
|
||||
|
||||
if source_face and reference_face:
|
||||
for processor_module in get_processors_modules(state_manager.get_item('processors')):
|
||||
abstract_reference_frame = processor_module.get_reference_frame(source_face, reference_face, reference_frame)
|
||||
if numpy.any(abstract_reference_frame):
|
||||
abstract_reference_faces = sort_and_filter_faces(get_many_faces([ abstract_reference_frame ]))
|
||||
abstract_reference_face = get_one_face(abstract_reference_faces, state_manager.get_item('reference_face_position'))
|
||||
append_reference_face(processor_module.__name__, abstract_reference_face)
|
||||
|
||||
|
||||
def process_image(start_time : float) -> ErrorCode:
|
||||
@ -352,7 +389,8 @@ def process_image(start_time : float) -> ErrorCode:
|
||||
|
||||
|
||||
def process_video(start_time : float) -> ErrorCode:
|
||||
if analyse_video(state_manager.get_item('target_path'), state_manager.get_item('trim_frame_start'), state_manager.get_item('trim_frame_end')):
|
||||
trim_frame_start, trim_frame_end = restrict_trim_frame(state_manager.get_item('target_path'), state_manager.get_item('trim_frame_start'), state_manager.get_item('trim_frame_end'))
|
||||
if analyse_video(state_manager.get_item('target_path'), trim_frame_start, trim_frame_end):
|
||||
return 3
|
||||
# clear temp
|
||||
logger.debug(wording.get('clearing_temp'), __name__)
|
||||
@ -365,7 +403,7 @@ def process_video(start_time : float) -> ErrorCode:
|
||||
temp_video_resolution = pack_resolution(restrict_video_resolution(state_manager.get_item('target_path'), unpack_resolution(state_manager.get_item('output_video_resolution'))))
|
||||
temp_video_fps = restrict_video_fps(state_manager.get_item('target_path'), state_manager.get_item('output_video_fps'))
|
||||
logger.info(wording.get('extracting_frames').format(resolution = temp_video_resolution, fps = temp_video_fps), __name__)
|
||||
if extract_frames(state_manager.get_item('target_path'), temp_video_resolution, temp_video_fps):
|
||||
if extract_frames(state_manager.get_item('target_path'), temp_video_resolution, temp_video_fps, trim_frame_start, trim_frame_end):
|
||||
logger.debug(wording.get('extracting_frames_succeed'), __name__)
|
||||
else:
|
||||
if is_process_stopping():
|
||||
@ -414,7 +452,7 @@ def process_video(start_time : float) -> ErrorCode:
|
||||
logger.warn(wording.get('replacing_audio_skipped'), __name__)
|
||||
move_temp_file(state_manager.get_item('target_path'), state_manager.get_item('output_path'))
|
||||
else:
|
||||
if restore_audio(state_manager.get_item('target_path'), state_manager.get_item('output_path'), state_manager.get_item('output_video_fps')):
|
||||
if restore_audio(state_manager.get_item('target_path'), state_manager.get_item('output_path'), state_manager.get_item('output_video_fps'), trim_frame_start, trim_frame_end):
|
||||
logger.debug(wording.get('restoring_audio_succeed'), __name__)
|
||||
else:
|
||||
if is_process_stopping():
|
||||
|
@ -1,22 +1,23 @@
|
||||
import os
|
||||
import shutil
|
||||
import ssl
|
||||
import subprocess
|
||||
import urllib.request
|
||||
from functools import lru_cache
|
||||
from typing import List, Tuple
|
||||
from typing import List, Optional, Tuple
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
import facefusion.choices
|
||||
from facefusion import logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import is_macos
|
||||
from facefusion.filesystem import get_file_size, is_file, remove_file
|
||||
from facefusion.hash_helper import validate_hash
|
||||
from facefusion.typing import DownloadSet
|
||||
from facefusion.typing import DownloadProvider, DownloadSet
|
||||
|
||||
if is_macos():
|
||||
ssl._create_default_https_context = ssl._create_unverified_context
|
||||
|
||||
def open_curl(args : List[str]) -> subprocess.Popen[bytes]:
|
||||
commands = [ shutil.which('curl'), '--silent', '--insecure', '--location' ]
|
||||
commands.extend(args)
|
||||
return subprocess.Popen(commands, stdin = subprocess.PIPE, stdout = subprocess.PIPE)
|
||||
|
||||
|
||||
def conditional_download(download_directory_path : str, urls : List[str]) -> None:
|
||||
@ -24,14 +25,15 @@ def conditional_download(download_directory_path : str, urls : List[str]) -> Non
|
||||
download_file_name = os.path.basename(urlparse(url).path)
|
||||
download_file_path = os.path.join(download_directory_path, download_file_name)
|
||||
initial_size = get_file_size(download_file_path)
|
||||
download_size = get_download_size(url)
|
||||
download_size = get_static_download_size(url)
|
||||
|
||||
if initial_size < download_size:
|
||||
with tqdm(total = download_size, initial = initial_size, desc = wording.get('downloading'), unit = 'B', unit_scale = True, unit_divisor = 1024, ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
|
||||
subprocess.Popen([ shutil.which('curl'), '--create-dirs', '--silent', '--insecure', '--location', '--continue-at', '-', '--output', download_file_path, url ])
|
||||
commands = [ '--create-dirs', '--continue-at', '-', '--output', download_file_path, url ]
|
||||
open_curl(commands)
|
||||
current_size = initial_size
|
||||
progress.set_postfix(download_providers = state_manager.get_item('download_providers'), file_name = download_file_name)
|
||||
|
||||
progress.set_postfix(file = download_file_name)
|
||||
while current_size < download_size:
|
||||
if is_file(download_file_path):
|
||||
current_size = get_file_size(download_file_path)
|
||||
@ -39,34 +41,42 @@ def conditional_download(download_directory_path : str, urls : List[str]) -> Non
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def get_download_size(url : str) -> int:
|
||||
try:
|
||||
response = urllib.request.urlopen(url, timeout = 10)
|
||||
content_length = response.headers.get('Content-Length')
|
||||
def get_static_download_size(url : str) -> int:
|
||||
commands = [ '-I', url ]
|
||||
process = open_curl(commands)
|
||||
lines = reversed(process.stdout.readlines())
|
||||
|
||||
for line in lines:
|
||||
__line__ = line.decode().lower()
|
||||
if 'content-length:' in __line__:
|
||||
_, content_length = __line__.split('content-length:')
|
||||
return int(content_length)
|
||||
except (OSError, TypeError, ValueError):
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
def is_download_done(url : str, file_path : str) -> bool:
|
||||
if is_file(file_path):
|
||||
return get_download_size(url) == get_file_size(file_path)
|
||||
return False
|
||||
@lru_cache(maxsize = None)
|
||||
def ping_static_url(url : str) -> bool:
|
||||
commands = [ '-I', url ]
|
||||
process = open_curl(commands)
|
||||
process.communicate()
|
||||
return process.returncode == 0
|
||||
|
||||
|
||||
def conditional_download_hashes(download_directory_path : str, hashes : DownloadSet) -> bool:
|
||||
def conditional_download_hashes(hashes : DownloadSet) -> bool:
|
||||
hash_paths = [ hashes.get(hash_key).get('path') for hash_key in hashes.keys() ]
|
||||
|
||||
process_manager.check()
|
||||
if not state_manager.get_item('skip_download'):
|
||||
_, invalid_hash_paths = validate_hash_paths(hash_paths)
|
||||
if invalid_hash_paths:
|
||||
for index in hashes:
|
||||
if hashes.get(index).get('path') in invalid_hash_paths:
|
||||
invalid_hash_url = hashes.get(index).get('url')
|
||||
download_directory_path = os.path.dirname(hashes.get(index).get('path'))
|
||||
conditional_download(download_directory_path, [ invalid_hash_url ])
|
||||
|
||||
valid_hash_paths, invalid_hash_paths = validate_hash_paths(hash_paths)
|
||||
|
||||
for valid_hash_path in valid_hash_paths:
|
||||
valid_hash_file_name, _ = os.path.splitext(os.path.basename(valid_hash_path))
|
||||
logger.debug(wording.get('validating_hash_succeed').format(hash_file_name = valid_hash_file_name), __name__)
|
||||
@ -79,19 +89,20 @@ def conditional_download_hashes(download_directory_path : str, hashes : Download
|
||||
return not invalid_hash_paths
|
||||
|
||||
|
||||
def conditional_download_sources(download_directory_path : str, sources : DownloadSet) -> bool:
|
||||
def conditional_download_sources(sources : DownloadSet) -> bool:
|
||||
source_paths = [ sources.get(source_key).get('path') for source_key in sources.keys() ]
|
||||
|
||||
process_manager.check()
|
||||
if not state_manager.get_item('skip_download'):
|
||||
_, invalid_source_paths = validate_source_paths(source_paths)
|
||||
if invalid_source_paths:
|
||||
for index in sources:
|
||||
if sources.get(index).get('path') in invalid_source_paths:
|
||||
invalid_source_url = sources.get(index).get('url')
|
||||
download_directory_path = os.path.dirname(sources.get(index).get('path'))
|
||||
conditional_download(download_directory_path, [ invalid_source_url ])
|
||||
|
||||
valid_source_paths, invalid_source_paths = validate_source_paths(source_paths)
|
||||
|
||||
for valid_source_path in valid_source_paths:
|
||||
valid_source_file_name, _ = os.path.splitext(os.path.basename(valid_source_path))
|
||||
logger.debug(wording.get('validating_source_succeed').format(source_file_name = valid_source_file_name), __name__)
|
||||
@ -129,3 +140,22 @@ def validate_source_paths(source_paths : List[str]) -> Tuple[List[str], List[str
|
||||
else:
|
||||
invalid_source_paths.append(source_path)
|
||||
return valid_source_paths, invalid_source_paths
|
||||
|
||||
|
||||
def resolve_download_url(base_name : str, file_name : str) -> Optional[str]:
|
||||
download_providers = state_manager.get_item('download_providers')
|
||||
|
||||
for download_provider in download_providers:
|
||||
if ping_download_provider(download_provider):
|
||||
return resolve_download_url_by_provider(download_provider, base_name, file_name)
|
||||
return None
|
||||
|
||||
|
||||
def ping_download_provider(download_provider : DownloadProvider) -> bool:
|
||||
download_provider_value = facefusion.choices.download_provider_set.get(download_provider)
|
||||
return ping_static_url(download_provider_value.get('url'))
|
||||
|
||||
|
||||
def resolve_download_url_by_provider(download_provider : DownloadProvider, base_name : str, file_name : str) -> Optional[str]:
|
||||
download_provider_value = facefusion.choices.download_provider_set.get(download_provider)
|
||||
return download_provider_value.get('url') + download_provider_value.get('path').format(base_name = base_name, file_name = file_name)
|
||||
|
@ -1,46 +1,43 @@
|
||||
import shutil
|
||||
import subprocess
|
||||
import xml.etree.ElementTree as ElementTree
|
||||
from functools import lru_cache
|
||||
from typing import Any, List
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from onnxruntime import get_available_providers, set_default_logger_severity
|
||||
|
||||
from facefusion.choices import execution_provider_set
|
||||
from facefusion.typing import ExecutionDevice, ExecutionProviderKey, ExecutionProviderSet, ValueAndUnit
|
||||
import facefusion.choices
|
||||
from facefusion.typing import ExecutionDevice, ExecutionProvider, ValueAndUnit
|
||||
|
||||
set_default_logger_severity(3)
|
||||
|
||||
|
||||
def get_execution_provider_choices() -> List[ExecutionProviderKey]:
|
||||
return list(get_available_execution_provider_set().keys())
|
||||
def has_execution_provider(execution_provider : ExecutionProvider) -> bool:
|
||||
return execution_provider in get_available_execution_providers()
|
||||
|
||||
|
||||
def has_execution_provider(execution_provider_key : ExecutionProviderKey) -> bool:
|
||||
return execution_provider_key in get_execution_provider_choices()
|
||||
def get_available_execution_providers() -> List[ExecutionProvider]:
|
||||
inference_execution_providers = get_available_providers()
|
||||
available_execution_providers = []
|
||||
|
||||
for execution_provider, execution_provider_value in facefusion.choices.execution_provider_set.items():
|
||||
if execution_provider_value in inference_execution_providers:
|
||||
available_execution_providers.append(execution_provider)
|
||||
|
||||
return available_execution_providers
|
||||
|
||||
|
||||
def get_available_execution_provider_set() -> ExecutionProviderSet:
|
||||
available_execution_providers = get_available_providers()
|
||||
available_execution_provider_set : ExecutionProviderSet = {}
|
||||
def create_inference_execution_providers(execution_device_id : str, execution_providers : List[ExecutionProvider]) -> List[Any]:
|
||||
inference_execution_providers : List[Any] = []
|
||||
|
||||
for execution_provider_key, execution_provider_value in execution_provider_set.items():
|
||||
if execution_provider_value in available_execution_providers:
|
||||
available_execution_provider_set[execution_provider_key] = execution_provider_value
|
||||
return available_execution_provider_set
|
||||
|
||||
|
||||
def create_execution_providers(execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> List[Any]:
|
||||
execution_providers : List[Any] = []
|
||||
|
||||
for execution_provider_key in execution_provider_keys:
|
||||
if execution_provider_key == 'cuda':
|
||||
execution_providers.append((execution_provider_set.get(execution_provider_key),
|
||||
for execution_provider in execution_providers:
|
||||
if execution_provider == 'cuda':
|
||||
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
|
||||
{
|
||||
'device_id': execution_device_id,
|
||||
'cudnn_conv_algo_search': 'EXHAUSTIVE' if use_exhaustive() else 'DEFAULT'
|
||||
'device_id': execution_device_id
|
||||
}))
|
||||
if execution_provider_key == 'tensorrt':
|
||||
execution_providers.append((execution_provider_set.get(execution_provider_key),
|
||||
if execution_provider == 'tensorrt':
|
||||
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
|
||||
{
|
||||
'device_id': execution_device_id,
|
||||
'trt_engine_cache_enable': True,
|
||||
@ -49,35 +46,28 @@ def create_execution_providers(execution_device_id : str, execution_provider_key
|
||||
'trt_timing_cache_path': '.caches',
|
||||
'trt_builder_optimization_level': 5
|
||||
}))
|
||||
if execution_provider_key == 'openvino':
|
||||
execution_providers.append((execution_provider_set.get(execution_provider_key),
|
||||
if execution_provider == 'openvino':
|
||||
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
|
||||
{
|
||||
'device_type': 'GPU.' + execution_device_id,
|
||||
'device_type': 'GPU' if execution_device_id == '0' else 'GPU.' + execution_device_id,
|
||||
'precision': 'FP32'
|
||||
}))
|
||||
if execution_provider_key in [ 'directml', 'rocm' ]:
|
||||
execution_providers.append((execution_provider_set.get(execution_provider_key),
|
||||
if execution_provider in [ 'directml', 'rocm' ]:
|
||||
inference_execution_providers.append((facefusion.choices.execution_provider_set.get(execution_provider),
|
||||
{
|
||||
'device_id': execution_device_id
|
||||
}))
|
||||
if execution_provider_key == 'coreml':
|
||||
execution_providers.append(execution_provider_set.get(execution_provider_key))
|
||||
if execution_provider == 'coreml':
|
||||
inference_execution_providers.append(facefusion.choices.execution_provider_set.get(execution_provider))
|
||||
|
||||
if 'cpu' in execution_provider_keys:
|
||||
execution_providers.append(execution_provider_set.get('cpu'))
|
||||
if 'cpu' in execution_providers:
|
||||
inference_execution_providers.append(facefusion.choices.execution_provider_set.get('cpu'))
|
||||
|
||||
return execution_providers
|
||||
|
||||
|
||||
def use_exhaustive() -> bool:
|
||||
execution_devices = detect_static_execution_devices()
|
||||
product_names = ('GeForce GTX 1630', 'GeForce GTX 1650', 'GeForce GTX 1660')
|
||||
|
||||
return any(execution_device.get('product').get('name').startswith(product_names) for execution_device in execution_devices)
|
||||
return inference_execution_providers
|
||||
|
||||
|
||||
def run_nvidia_smi() -> subprocess.Popen[bytes]:
|
||||
commands = [ 'nvidia-smi', '--query', '--xml-format' ]
|
||||
commands = [ shutil.which('nvidia-smi'), '--query', '--xml-format' ]
|
||||
return subprocess.Popen(commands, stdout = subprocess.PIPE)
|
||||
|
||||
|
||||
@ -98,37 +88,44 @@ def detect_execution_devices() -> List[ExecutionDevice]:
|
||||
for gpu_element in root_element.findall('gpu'):
|
||||
execution_devices.append(
|
||||
{
|
||||
'driver_version': root_element.find('driver_version').text,
|
||||
'driver_version': root_element.findtext('driver_version'),
|
||||
'framework':
|
||||
{
|
||||
'name': 'CUDA',
|
||||
'version': root_element.find('cuda_version').text
|
||||
'version': root_element.findtext('cuda_version')
|
||||
},
|
||||
'product':
|
||||
{
|
||||
'vendor': 'NVIDIA',
|
||||
'name': gpu_element.find('product_name').text.replace('NVIDIA ', '')
|
||||
'name': gpu_element.findtext('product_name').replace('NVIDIA', '').strip()
|
||||
},
|
||||
'video_memory':
|
||||
{
|
||||
'total': create_value_and_unit(gpu_element.find('fb_memory_usage/total').text),
|
||||
'free': create_value_and_unit(gpu_element.find('fb_memory_usage/free').text)
|
||||
'total': create_value_and_unit(gpu_element.findtext('fb_memory_usage/total')),
|
||||
'free': create_value_and_unit(gpu_element.findtext('fb_memory_usage/free'))
|
||||
},
|
||||
'temperature':
|
||||
{
|
||||
'gpu': create_value_and_unit(gpu_element.findtext('temperature/gpu_temp')),
|
||||
'memory': create_value_and_unit(gpu_element.findtext('temperature/memory_temp'))
|
||||
},
|
||||
'utilization':
|
||||
{
|
||||
'gpu': create_value_and_unit(gpu_element.find('utilization/gpu_util').text),
|
||||
'memory': create_value_and_unit(gpu_element.find('utilization/memory_util').text)
|
||||
'gpu': create_value_and_unit(gpu_element.findtext('utilization/gpu_util')),
|
||||
'memory': create_value_and_unit(gpu_element.findtext('utilization/memory_util'))
|
||||
}
|
||||
})
|
||||
|
||||
return execution_devices
|
||||
|
||||
|
||||
def create_value_and_unit(text : str) -> ValueAndUnit:
|
||||
value, unit = text.split()
|
||||
value_and_unit : ValueAndUnit =\
|
||||
def create_value_and_unit(text : str) -> Optional[ValueAndUnit]:
|
||||
if ' ' in text:
|
||||
value, unit = text.split(' ')
|
||||
|
||||
return\
|
||||
{
|
||||
'value': int(value),
|
||||
'unit': str(unit)
|
||||
}
|
||||
|
||||
return value_and_unit
|
||||
return None
|
||||
|
@ -1,3 +1,4 @@
|
||||
import signal
|
||||
import sys
|
||||
from time import sleep
|
||||
|
||||
@ -7,6 +8,7 @@ from facefusion.typing import ErrorCode
|
||||
|
||||
|
||||
def hard_exit(error_code : ErrorCode) -> None:
|
||||
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
||||
sys.exit(error_code)
|
||||
|
||||
|
||||
|
@ -1,23 +1,27 @@
|
||||
from functools import lru_cache
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy
|
||||
|
||||
from facefusion import inference_manager
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_helper import warp_face_by_face_landmark_5
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import Age, FaceLandmark5, Gender, InferencePool, ModelOptions, ModelSet, Race, VisionFrame
|
||||
from facefusion.typing import Age, DownloadScope, FaceLandmark5, Gender, InferencePool, ModelOptions, ModelSet, Race, VisionFrame
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'fairface':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_classifier':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fairface.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'fairface.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/fairface.hash')
|
||||
}
|
||||
},
|
||||
@ -25,7 +29,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_classifier':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fairface.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'fairface.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/fairface.onnx')
|
||||
}
|
||||
},
|
||||
@ -34,7 +38,7 @@ MODEL_SET : ModelSet =\
|
||||
'mean': [ 0.485, 0.456, 0.406 ],
|
||||
'standard_deviation': [ 0.229, 0.224, 0.225 ]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
@ -47,15 +51,14 @@ def clear_inference_pool() -> None:
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
return MODEL_SET.get('fairface')
|
||||
return create_static_model_set('full').get('fairface')
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def classify_face(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Gender, Age, Race]:
|
||||
|
@ -2,24 +2,28 @@ from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy
|
||||
from charset_normalizer.md import lru_cache
|
||||
|
||||
from facefusion import inference_manager, state_manager
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_helper import create_rotated_matrix_and_size, create_static_anchors, distance_to_bounding_box, distance_to_face_landmark_5, normalize_bounding_box, transform_bounding_box, transform_points
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.thread_helper import thread_semaphore
|
||||
from facefusion.typing import Angle, BoundingBox, Detection, DownloadSet, FaceLandmark5, InferencePool, ModelSet, Score, VisionFrame
|
||||
from facefusion.typing import Angle, BoundingBox, Detection, DownloadScope, DownloadSet, FaceLandmark5, InferencePool, ModelSet, Score, VisionFrame
|
||||
from facefusion.vision import resize_frame_resolution, unpack_resolution
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'retinaface':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'retinaface':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/retinaface_10g.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'retinaface_10g.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/retinaface_10g.hash')
|
||||
}
|
||||
},
|
||||
@ -27,7 +31,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'retinaface':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/retinaface_10g.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'retinaface_10g.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx')
|
||||
}
|
||||
}
|
||||
@ -38,7 +42,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'scrfd':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/scrfd_2.5g.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'scrfd_2.5g.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/scrfd_2.5g.hash')
|
||||
}
|
||||
},
|
||||
@ -46,7 +50,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'scrfd':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/scrfd_2.5g.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'scrfd_2.5g.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/scrfd_2.5g.onnx')
|
||||
}
|
||||
}
|
||||
@ -57,7 +61,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'yoloface':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/yoloface_8n.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'yoloface_8n.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/yoloface_8n.hash')
|
||||
}
|
||||
},
|
||||
@ -65,46 +69,47 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'yoloface':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/yoloface_8n.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'yoloface_8n.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/yoloface_8n.onnx')
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
_, model_sources = collect_model_downloads()
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_detector_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_detector_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
|
||||
model_hashes = {}
|
||||
model_sources = {}
|
||||
model_set = create_static_model_set('full')
|
||||
|
||||
if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]:
|
||||
model_hashes['retinaface'] = MODEL_SET.get('retinaface').get('hashes').get('retinaface')
|
||||
model_sources['retinaface'] = MODEL_SET.get('retinaface').get('sources').get('retinaface')
|
||||
model_hashes['retinaface'] = model_set.get('retinaface').get('hashes').get('retinaface')
|
||||
model_sources['retinaface'] = model_set.get('retinaface').get('sources').get('retinaface')
|
||||
|
||||
if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]:
|
||||
model_hashes['scrfd'] = MODEL_SET.get('scrfd').get('hashes').get('scrfd')
|
||||
model_sources['scrfd'] = MODEL_SET.get('scrfd').get('sources').get('scrfd')
|
||||
model_hashes['scrfd'] = model_set.get('scrfd').get('hashes').get('scrfd')
|
||||
model_sources['scrfd'] = model_set.get('scrfd').get('sources').get('scrfd')
|
||||
|
||||
if state_manager.get_item('face_detector_model') in [ 'many', 'yoloface' ]:
|
||||
model_hashes['yoloface'] = MODEL_SET.get('yoloface').get('hashes').get('yoloface')
|
||||
model_sources['yoloface'] = MODEL_SET.get('yoloface').get('sources').get('yoloface')
|
||||
model_hashes['yoloface'] = model_set.get('yoloface').get('hashes').get('yoloface')
|
||||
model_sources['yoloface'] = model_set.get('yoloface').get('sources').get('yoloface')
|
||||
|
||||
return model_hashes, model_sources
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes, model_sources = collect_model_downloads()
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def detect_faces(vision_frame : VisionFrame) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]:
|
||||
|
@ -33,6 +33,14 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.38710391, 0.72160547 ],
|
||||
[ 0.61507734, 0.72034453 ]
|
||||
]),
|
||||
'dfl_whole_face': numpy.array(
|
||||
[
|
||||
[ 0.35342266, 0.39285716 ],
|
||||
[ 0.62797622, 0.39285716 ],
|
||||
[ 0.48660713, 0.54017860 ],
|
||||
[ 0.38839287, 0.68750011 ],
|
||||
[ 0.59821427, 0.68750011 ]
|
||||
]),
|
||||
'ffhq_512': numpy.array(
|
||||
[
|
||||
[ 0.37691676, 0.46864664 ],
|
||||
@ -40,6 +48,22 @@ WARP_TEMPLATES : WarpTemplateSet =\
|
||||
[ 0.50123859, 0.61331904 ],
|
||||
[ 0.39308822, 0.72541100 ],
|
||||
[ 0.61150205, 0.72490465 ]
|
||||
]),
|
||||
'mtcnn_512': numpy.array(
|
||||
[
|
||||
[ 0.36562865, 0.46733799 ],
|
||||
[ 0.63305391, 0.46585885 ],
|
||||
[ 0.50019127, 0.61942959 ],
|
||||
[ 0.39032951, 0.77598822 ],
|
||||
[ 0.61178945, 0.77476328 ]
|
||||
]),
|
||||
'styleganex_384': numpy.array(
|
||||
[
|
||||
[ 0.42353745, 0.52289879 ],
|
||||
[ 0.57725008, 0.52319972 ],
|
||||
[ 0.50123859, 0.61331904 ],
|
||||
[ 0.43364461, 0.68337652 ],
|
||||
[ 0.57015325, 0.68306005 ]
|
||||
])
|
||||
}
|
||||
|
||||
|
@ -1,24 +1,28 @@
|
||||
from functools import lru_cache
|
||||
from typing import Tuple
|
||||
|
||||
import cv2
|
||||
import numpy
|
||||
|
||||
from facefusion import inference_manager, state_manager
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_helper import create_rotated_matrix_and_size, estimate_matrix_by_face_landmark_5, transform_points, warp_face_by_translation
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import Angle, BoundingBox, DownloadSet, FaceLandmark5, FaceLandmark68, InferencePool, ModelSet, Prediction, Score, VisionFrame
|
||||
from facefusion.typing import Angle, BoundingBox, DownloadScope, DownloadSet, FaceLandmark5, FaceLandmark68, InferencePool, ModelSet, Prediction, Score, VisionFrame
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'2dfan4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'2dfan4':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', '2dfan4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/2dfan4.hash')
|
||||
}
|
||||
},
|
||||
@ -26,7 +30,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'2dfan4':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', '2dfan4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/2dfan4.onnx')
|
||||
}
|
||||
},
|
||||
@ -38,7 +42,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'peppa_wutz':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'peppa_wutz.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/peppa_wutz.hash')
|
||||
}
|
||||
},
|
||||
@ -46,7 +50,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'peppa_wutz':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'peppa_wutz.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/peppa_wutz.onnx')
|
||||
}
|
||||
},
|
||||
@ -58,7 +62,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'fan_68_5':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fan_68_5.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'fan_68_5.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/fan_68_5.hash')
|
||||
}
|
||||
},
|
||||
@ -66,49 +70,49 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'fan_68_5':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fan_68_5.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'fan_68_5.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/fan_68_5.onnx')
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
_, model_sources = collect_model_downloads()
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_landmarker_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_landmarker_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
|
||||
model_set = create_static_model_set('full')
|
||||
model_hashes =\
|
||||
{
|
||||
'fan_68_5': MODEL_SET.get('fan_68_5').get('hashes').get('fan_68_5')
|
||||
'fan_68_5': model_set.get('fan_68_5').get('hashes').get('fan_68_5')
|
||||
}
|
||||
model_sources =\
|
||||
{
|
||||
'fan_68_5': MODEL_SET.get('fan_68_5').get('sources').get('fan_68_5')
|
||||
'fan_68_5': model_set.get('fan_68_5').get('sources').get('fan_68_5')
|
||||
}
|
||||
|
||||
if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
|
||||
model_hashes['2dfan4'] = MODEL_SET.get('2dfan4').get('hashes').get('2dfan4')
|
||||
model_sources['2dfan4'] = MODEL_SET.get('2dfan4').get('sources').get('2dfan4')
|
||||
model_hashes['2dfan4'] = model_set.get('2dfan4').get('hashes').get('2dfan4')
|
||||
model_sources['2dfan4'] = model_set.get('2dfan4').get('sources').get('2dfan4')
|
||||
|
||||
if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
|
||||
model_hashes['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('hashes').get('peppa_wutz')
|
||||
model_sources['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('sources').get('peppa_wutz')
|
||||
model_hashes['peppa_wutz'] = model_set.get('peppa_wutz').get('hashes').get('peppa_wutz')
|
||||
model_sources['peppa_wutz'] = model_set.get('peppa_wutz').get('sources').get('peppa_wutz')
|
||||
|
||||
return model_hashes, model_sources
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes, model_sources = collect_model_downloads()
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
|
||||
@ -119,6 +123,7 @@ def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox
|
||||
|
||||
if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]:
|
||||
face_landmark_2dfan4, face_landmark_score_2dfan4 = detect_with_2dfan4(vision_frame, bounding_box, face_angle)
|
||||
|
||||
if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]:
|
||||
face_landmark_peppa_wutz, face_landmark_score_peppa_wutz = detect_with_peppa_wutz(vision_frame, bounding_box, face_angle)
|
||||
|
||||
@ -128,7 +133,7 @@ def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox
|
||||
|
||||
|
||||
def detect_with_2dfan4(temp_vision_frame: VisionFrame, bounding_box: BoundingBox, face_angle: Angle) -> Tuple[FaceLandmark68, Score]:
|
||||
model_size = MODEL_SET.get('2dfan4').get('size')
|
||||
model_size = create_static_model_set('full').get('2dfan4').get('size')
|
||||
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
|
||||
translation = (model_size[0] - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
|
||||
rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, model_size)
|
||||
@ -147,7 +152,7 @@ def detect_with_2dfan4(temp_vision_frame: VisionFrame, bounding_box: BoundingBox
|
||||
|
||||
|
||||
def detect_with_peppa_wutz(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]:
|
||||
model_size = MODEL_SET.get('peppa_wutz').get('size')
|
||||
model_size = create_static_model_set('full').get('peppa_wutz').get('size')
|
||||
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None)
|
||||
translation = (model_size[0] - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5
|
||||
rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, model_size)
|
||||
@ -167,7 +172,7 @@ def detect_with_peppa_wutz(temp_vision_frame : VisionFrame, bounding_box : Bound
|
||||
|
||||
def conditional_optimize_contrast(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab)
|
||||
if numpy.mean(crop_vision_frame[:, :, 0]) < 30: # type:ignore[arg-type]
|
||||
if numpy.mean(crop_vision_frame[:, :, 0]) < 30: #type:ignore[arg-type]
|
||||
crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0])
|
||||
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB)
|
||||
return crop_vision_frame
|
||||
|
@ -1,45 +1,89 @@
|
||||
from functools import lru_cache
|
||||
from typing import Dict, List, Tuple
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy
|
||||
from cv2.typing import Size
|
||||
|
||||
from facefusion import inference_manager
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
import facefusion.choices
|
||||
from facefusion import inference_manager, state_manager
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame
|
||||
from facefusion.typing import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_occluder':
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'xseg_1':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_occluder':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/dfl_xseg.hash',
|
||||
'path': resolve_relative_path('../.assets/models/dfl_xseg.hash')
|
||||
'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/xseg_1.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'face_occluder':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/dfl_xseg.onnx',
|
||||
'path': resolve_relative_path('../.assets/models/dfl_xseg.onnx')
|
||||
'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/xseg_1.onnx')
|
||||
}
|
||||
},
|
||||
'size': (256, 256)
|
||||
},
|
||||
'face_parser':
|
||||
'xseg_2':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_occluder':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/xseg_2.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'face_occluder':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/xseg_2.onnx')
|
||||
}
|
||||
},
|
||||
'size': (256, 256)
|
||||
},
|
||||
'bisenet_resnet_18':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_parser':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/bisenet_resnet_34.hash',
|
||||
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'face_parser':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx')
|
||||
}
|
||||
},
|
||||
'size': (512, 512)
|
||||
},
|
||||
'bisenet_resnet_34':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_parser':
|
||||
{
|
||||
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash')
|
||||
}
|
||||
},
|
||||
@ -47,26 +91,13 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_parser':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/bisenet_resnet_34.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx')
|
||||
}
|
||||
},
|
||||
'size': (512, 512)
|
||||
}
|
||||
}
|
||||
FACE_MASK_REGIONS : Dict[FaceMaskRegion, int] =\
|
||||
{
|
||||
'skin': 1,
|
||||
'left-eyebrow': 2,
|
||||
'right-eyebrow': 3,
|
||||
'left-eye': 4,
|
||||
'right-eye': 5,
|
||||
'glasses': 6,
|
||||
'nose': 10,
|
||||
'mouth': 11,
|
||||
'upper-lip': 12,
|
||||
'lower-lip': 13
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
@ -79,24 +110,33 @@ def clear_inference_pool() -> None:
|
||||
|
||||
|
||||
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
|
||||
model_hashes =\
|
||||
{
|
||||
'face_occluder': MODEL_SET.get('face_occluder').get('hashes').get('face_occluder'),
|
||||
'face_parser': MODEL_SET.get('face_parser').get('hashes').get('face_parser')
|
||||
}
|
||||
model_sources =\
|
||||
{
|
||||
'face_occluder': MODEL_SET.get('face_occluder').get('sources').get('face_occluder'),
|
||||
'face_parser': MODEL_SET.get('face_parser').get('sources').get('face_parser')
|
||||
}
|
||||
model_hashes = {}
|
||||
model_sources = {}
|
||||
model_set = create_static_model_set('full')
|
||||
|
||||
if state_manager.get_item('face_occluder_model') == 'xseg_1':
|
||||
model_hashes['xseg_1'] = model_set.get('xseg_1').get('hashes').get('face_occluder')
|
||||
model_sources['xseg_1'] = model_set.get('xseg_1').get('sources').get('face_occluder')
|
||||
|
||||
if state_manager.get_item('face_occluder_model') == 'xseg_2':
|
||||
model_hashes['xseg_2'] = model_set.get('xseg_2').get('hashes').get('face_occluder')
|
||||
model_sources['xseg_2'] = model_set.get('xseg_2').get('sources').get('face_occluder')
|
||||
|
||||
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_18':
|
||||
model_hashes['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('hashes').get('face_parser')
|
||||
model_sources['bisenet_resnet_18'] = model_set.get('bisenet_resnet_18').get('sources').get('face_parser')
|
||||
|
||||
if state_manager.get_item('face_parser_model') == 'bisenet_resnet_34':
|
||||
model_hashes['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('hashes').get('face_parser')
|
||||
model_sources['bisenet_resnet_34'] = model_set.get('bisenet_resnet_34').get('sources').get('face_parser')
|
||||
|
||||
return model_hashes, model_sources
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes, model_sources = collect_model_downloads()
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
@ -114,7 +154,8 @@ def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_p
|
||||
|
||||
|
||||
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
|
||||
model_size = MODEL_SET.get('face_occluder').get('size')
|
||||
face_occluder_model = state_manager.get_item('face_occluder_model')
|
||||
model_size = create_static_model_set('full').get(face_occluder_model).get('size')
|
||||
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
|
||||
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255
|
||||
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
|
||||
@ -126,7 +167,8 @@ def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
|
||||
|
||||
|
||||
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
|
||||
model_size = MODEL_SET.get('face_parser').get('size')
|
||||
face_parser_model = state_manager.get_item('face_parser_model')
|
||||
model_size = create_static_model_set('full').get(face_parser_model).get('size')
|
||||
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
|
||||
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255
|
||||
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))
|
||||
@ -134,7 +176,7 @@ def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List
|
||||
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0)
|
||||
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
|
||||
region_mask = forward_parse_face(prepare_vision_frame)
|
||||
region_mask = numpy.isin(region_mask.argmax(0), [ FACE_MASK_REGIONS[region] for region in face_mask_regions ])
|
||||
region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ])
|
||||
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
|
||||
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
|
||||
return region_mask
|
||||
@ -150,7 +192,8 @@ def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask:
|
||||
|
||||
|
||||
def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
|
||||
face_occluder = get_inference_pool().get('face_occluder')
|
||||
face_occluder_model = state_manager.get_item('face_occluder_model')
|
||||
face_occluder = get_inference_pool().get(face_occluder_model)
|
||||
|
||||
with conditional_thread_semaphore():
|
||||
occlusion_mask : Mask = face_occluder.run(None,
|
||||
@ -162,7 +205,8 @@ def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
|
||||
|
||||
|
||||
def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask:
|
||||
face_parser = get_inference_pool().get('face_parser')
|
||||
face_parser_model = state_manager.get_item('face_parser_model')
|
||||
face_parser = get_inference_pool().get(face_parser_model)
|
||||
|
||||
with conditional_thread_semaphore():
|
||||
region_mask : Mask = face_parser.run(None,
|
||||
|
@ -1,23 +1,27 @@
|
||||
from functools import lru_cache
|
||||
from typing import Tuple
|
||||
|
||||
import numpy
|
||||
|
||||
from facefusion import inference_manager
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_helper import warp_face_by_face_landmark_5
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import Embedding, FaceLandmark5, InferencePool, ModelOptions, ModelSet, VisionFrame
|
||||
from facefusion.typing import DownloadScope, Embedding, FaceLandmark5, InferencePool, ModelOptions, ModelSet, VisionFrame
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'arcface':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_recognizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash')
|
||||
}
|
||||
},
|
||||
@ -25,14 +29,14 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_recognizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_w600k_r50.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx')
|
||||
}
|
||||
},
|
||||
'template': 'arcface_112_v2',
|
||||
'size': (112, 112)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
@ -45,15 +49,14 @@ def clear_inference_pool() -> None:
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
return MODEL_SET.get('arcface')
|
||||
return create_static_model_set('full').get('arcface')
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]:
|
||||
|
@ -33,17 +33,17 @@ def calc_face_distance(face : Face, reference_face : Face) -> float:
|
||||
def sort_and_filter_faces(faces : List[Face]) -> List[Face]:
|
||||
if faces:
|
||||
if state_manager.get_item('face_selector_order'):
|
||||
faces = sort_by_order(faces, state_manager.get_item('face_selector_order'))
|
||||
faces = sort_faces_by_order(faces, state_manager.get_item('face_selector_order'))
|
||||
if state_manager.get_item('face_selector_gender'):
|
||||
faces = filter_by_gender(faces, state_manager.get_item('face_selector_gender'))
|
||||
faces = filter_faces_by_gender(faces, state_manager.get_item('face_selector_gender'))
|
||||
if state_manager.get_item('face_selector_race'):
|
||||
faces = filter_by_race(faces, state_manager.get_item('face_selector_race'))
|
||||
faces = filter_faces_by_race(faces, state_manager.get_item('face_selector_race'))
|
||||
if state_manager.get_item('face_selector_age_start') or state_manager.get_item('face_selector_age_end'):
|
||||
faces = filter_by_age(faces, state_manager.get_item('face_selector_age_start'), state_manager.get_item('face_selector_age_end'))
|
||||
faces = filter_faces_by_age(faces, state_manager.get_item('face_selector_age_start'), state_manager.get_item('face_selector_age_end'))
|
||||
return faces
|
||||
|
||||
|
||||
def sort_by_order(faces : List[Face], order : FaceSelectorOrder) -> List[Face]:
|
||||
def sort_faces_by_order(faces : List[Face], order : FaceSelectorOrder) -> List[Face]:
|
||||
if order == 'left-right':
|
||||
return sorted(faces, key = lambda face: face.bounding_box[0])
|
||||
if order == 'right-left':
|
||||
@ -63,7 +63,7 @@ def sort_by_order(faces : List[Face], order : FaceSelectorOrder) -> List[Face]:
|
||||
return faces
|
||||
|
||||
|
||||
def filter_by_gender(faces : List[Face], gender : Gender) -> List[Face]:
|
||||
def filter_faces_by_gender(faces : List[Face], gender : Gender) -> List[Face]:
|
||||
filter_faces = []
|
||||
|
||||
for face in faces:
|
||||
@ -72,7 +72,7 @@ def filter_by_gender(faces : List[Face], gender : Gender) -> List[Face]:
|
||||
return filter_faces
|
||||
|
||||
|
||||
def filter_by_age(faces : List[Face], face_selector_age_start : int, face_selector_age_end : int) -> List[Face]:
|
||||
def filter_faces_by_age(faces : List[Face], face_selector_age_start : int, face_selector_age_end : int) -> List[Face]:
|
||||
filter_faces = []
|
||||
age = range(face_selector_age_start, face_selector_age_end)
|
||||
|
||||
@ -82,7 +82,7 @@ def filter_by_age(faces : List[Face], face_selector_age_start : int, face_select
|
||||
return filter_faces
|
||||
|
||||
|
||||
def filter_by_race(faces : List[Face], race : Race) -> List[Face]:
|
||||
def filter_faces_by_race(faces : List[Face], race : Race) -> List[Face]:
|
||||
filter_faces = []
|
||||
|
||||
for face in faces:
|
||||
|
@ -5,22 +5,50 @@ import tempfile
|
||||
from typing import List, Optional
|
||||
|
||||
import filetype
|
||||
from tqdm import tqdm
|
||||
|
||||
from facefusion import logger, process_manager, state_manager
|
||||
from facefusion import logger, process_manager, state_manager, wording
|
||||
from facefusion.filesystem import remove_file
|
||||
from facefusion.temp_helper import get_temp_file_path, get_temp_frames_pattern
|
||||
from facefusion.typing import AudioBuffer, Fps, OutputVideoPreset
|
||||
from facefusion.vision import restrict_video_fps
|
||||
from facefusion.temp_helper import get_temp_file_path, get_temp_frame_paths, get_temp_frames_pattern
|
||||
from facefusion.typing import AudioBuffer, Fps, OutputVideoPreset, UpdateProgress
|
||||
from facefusion.vision import count_trim_frame_total, detect_video_duration, restrict_video_fps
|
||||
|
||||
|
||||
def run_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
|
||||
commands = [ shutil.which('ffmpeg'), '-hide_banner', '-loglevel', 'error' ]
|
||||
def run_ffmpeg_with_progress(args: List[str], update_progress : UpdateProgress) -> subprocess.Popen[bytes]:
|
||||
log_level = state_manager.get_item('log_level')
|
||||
commands = [ shutil.which('ffmpeg'), '-hide_banner', '-nostats', '-loglevel', 'error', '-progress', '-' ]
|
||||
commands.extend(args)
|
||||
process = subprocess.Popen(commands, stderr = subprocess.PIPE, stdout = subprocess.PIPE)
|
||||
|
||||
while process_manager.is_processing():
|
||||
try:
|
||||
if state_manager.get_item('log_level') == 'debug':
|
||||
|
||||
while __line__ := process.stdout.readline().decode().lower():
|
||||
if 'frame=' in __line__:
|
||||
_, frame_number = __line__.split('frame=')
|
||||
update_progress(int(frame_number))
|
||||
|
||||
if log_level == 'debug':
|
||||
log_debug(process)
|
||||
process.wait(timeout = 0.5)
|
||||
except subprocess.TimeoutExpired:
|
||||
continue
|
||||
return process
|
||||
|
||||
if process_manager.is_stopping():
|
||||
process.terminate()
|
||||
return process
|
||||
|
||||
|
||||
def run_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
|
||||
log_level = state_manager.get_item('log_level')
|
||||
commands = [ shutil.which('ffmpeg'), '-hide_banner', '-nostats', '-loglevel', 'error' ]
|
||||
commands.extend(args)
|
||||
process = subprocess.Popen(commands, stderr = subprocess.PIPE, stdout = subprocess.PIPE)
|
||||
|
||||
while process_manager.is_processing():
|
||||
try:
|
||||
if log_level == 'debug':
|
||||
log_debug(process)
|
||||
process.wait(timeout = 0.5)
|
||||
except subprocess.TimeoutExpired:
|
||||
@ -33,7 +61,7 @@ def run_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
|
||||
|
||||
|
||||
def open_ffmpeg(args : List[str]) -> subprocess.Popen[bytes]:
|
||||
commands = [ shutil.which('ffmpeg'), '-hide_banner', '-loglevel', 'quiet' ]
|
||||
commands = [ shutil.which('ffmpeg'), '-loglevel', 'quiet' ]
|
||||
commands.extend(args)
|
||||
return subprocess.Popen(commands, stdin = subprocess.PIPE, stdout = subprocess.PIPE)
|
||||
|
||||
@ -47,9 +75,8 @@ def log_debug(process : subprocess.Popen[bytes]) -> None:
|
||||
logger.debug(error.strip(), __name__)
|
||||
|
||||
|
||||
def extract_frames(target_path : str, temp_video_resolution : str, temp_video_fps : Fps) -> bool:
|
||||
trim_frame_start = state_manager.get_item('trim_frame_start')
|
||||
trim_frame_end = state_manager.get_item('trim_frame_end')
|
||||
def extract_frames(target_path : str, temp_video_resolution : str, temp_video_fps : Fps, trim_frame_start : int, trim_frame_end : int) -> bool:
|
||||
extract_frame_total = count_trim_frame_total(target_path, trim_frame_start, trim_frame_end)
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '%08d')
|
||||
commands = [ '-i', target_path, '-s', str(temp_video_resolution), '-q:v', '0' ]
|
||||
|
||||
@ -62,34 +89,48 @@ def extract_frames(target_path : str, temp_video_resolution : str, temp_video_fp
|
||||
else:
|
||||
commands.extend([ '-vf', 'fps=' + str(temp_video_fps) ])
|
||||
commands.extend([ '-vsync', '0', temp_frames_pattern ])
|
||||
return run_ffmpeg(commands).returncode == 0
|
||||
|
||||
with tqdm(total = extract_frame_total, desc = wording.get('extracting'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
|
||||
process = run_ffmpeg_with_progress(commands, lambda frame_number: progress.update(frame_number - progress.n))
|
||||
return process.returncode == 0
|
||||
|
||||
|
||||
def merge_video(target_path : str, output_video_resolution : str, output_video_fps : Fps) -> bool:
|
||||
def merge_video(target_path : str, output_video_resolution : str, output_video_fps: Fps) -> bool:
|
||||
output_video_encoder = state_manager.get_item('output_video_encoder')
|
||||
output_video_quality = state_manager.get_item('output_video_quality')
|
||||
output_video_preset = state_manager.get_item('output_video_preset')
|
||||
merge_frame_total = len(get_temp_frame_paths(target_path))
|
||||
temp_video_fps = restrict_video_fps(target_path, output_video_fps)
|
||||
temp_file_path = get_temp_file_path(target_path)
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '%08d')
|
||||
commands = [ '-r', str(temp_video_fps), '-i', temp_frames_pattern, '-s', str(output_video_resolution), '-c:v', state_manager.get_item('output_video_encoder') ]
|
||||
is_webm = filetype.guess_mime(target_path) == 'video/webm'
|
||||
|
||||
if state_manager.get_item('output_video_encoder') in [ 'libx264', 'libx265' ]:
|
||||
output_video_compression = round(51 - (state_manager.get_item('output_video_quality') * 0.51))
|
||||
commands.extend([ '-crf', str(output_video_compression), '-preset', state_manager.get_item('output_video_preset') ])
|
||||
if state_manager.get_item('output_video_encoder') in [ 'libvpx-vp9' ]:
|
||||
output_video_compression = round(63 - (state_manager.get_item('output_video_quality') * 0.63))
|
||||
if is_webm:
|
||||
output_video_encoder = 'libvpx-vp9'
|
||||
commands = [ '-r', str(temp_video_fps), '-i', temp_frames_pattern, '-s', str(output_video_resolution), '-c:v', output_video_encoder ]
|
||||
if output_video_encoder in [ 'libx264', 'libx265' ]:
|
||||
output_video_compression = round(51 - (output_video_quality * 0.51))
|
||||
commands.extend([ '-crf', str(output_video_compression), '-preset', output_video_preset ])
|
||||
if output_video_encoder in [ 'libvpx-vp9' ]:
|
||||
output_video_compression = round(63 - (output_video_quality * 0.63))
|
||||
commands.extend([ '-crf', str(output_video_compression) ])
|
||||
if state_manager.get_item('output_video_encoder') in [ 'h264_nvenc', 'hevc_nvenc' ]:
|
||||
output_video_compression = round(51 - (state_manager.get_item('output_video_quality') * 0.51))
|
||||
commands.extend([ '-cq', str(output_video_compression), '-preset', map_nvenc_preset(state_manager.get_item('output_video_preset')) ])
|
||||
if state_manager.get_item('output_video_encoder') in [ 'h264_amf', 'hevc_amf' ]:
|
||||
output_video_compression = round(51 - (state_manager.get_item('output_video_quality') * 0.51))
|
||||
commands.extend([ '-qp_i', str(output_video_compression), '-qp_p', str(output_video_compression), '-quality', map_amf_preset(state_manager.get_item('output_video_preset')) ])
|
||||
if state_manager.get_item('output_video_encoder') in [ 'h264_videotoolbox', 'hevc_videotoolbox' ]:
|
||||
commands.extend([ '-q:v', str(state_manager.get_item('output_video_quality')) ])
|
||||
if output_video_encoder in [ 'h264_nvenc', 'hevc_nvenc' ]:
|
||||
output_video_compression = round(51 - (output_video_quality * 0.51))
|
||||
commands.extend([ '-cq', str(output_video_compression), '-preset', map_nvenc_preset(output_video_preset) ])
|
||||
if output_video_encoder in [ 'h264_amf', 'hevc_amf' ]:
|
||||
output_video_compression = round(51 - (output_video_quality * 0.51))
|
||||
commands.extend([ '-qp_i', str(output_video_compression), '-qp_p', str(output_video_compression), '-quality', map_amf_preset(output_video_preset) ])
|
||||
if output_video_encoder in [ 'h264_videotoolbox', 'hevc_videotoolbox' ]:
|
||||
commands.extend([ '-q:v', str(output_video_quality) ])
|
||||
commands.extend([ '-vf', 'framerate=fps=' + str(output_video_fps), '-pix_fmt', 'yuv420p', '-colorspace', 'bt709', '-y', temp_file_path ])
|
||||
return run_ffmpeg(commands).returncode == 0
|
||||
|
||||
with tqdm(total = merge_frame_total, desc = wording.get('merging'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
|
||||
process = run_ffmpeg_with_progress(commands, lambda frame_number: progress.update(frame_number - progress.n))
|
||||
return process.returncode == 0
|
||||
|
||||
|
||||
def concat_video(output_path : str, temp_output_paths : List[str]) -> bool:
|
||||
output_audio_encoder = state_manager.get_item('output_audio_encoder')
|
||||
concat_video_path = tempfile.mktemp()
|
||||
|
||||
with open(concat_video_path, 'w') as concat_video_file:
|
||||
@ -97,7 +138,7 @@ def concat_video(output_path : str, temp_output_paths : List[str]) -> bool:
|
||||
concat_video_file.write('file \'' + os.path.abspath(temp_output_path) + '\'' + os.linesep)
|
||||
concat_video_file.flush()
|
||||
concat_video_file.close()
|
||||
commands = [ '-f', 'concat', '-safe', '0', '-i', concat_video_file.name, '-c:v', 'copy', '-c:a', state_manager.get_item('output_audio_encoder'), '-y', os.path.abspath(output_path) ]
|
||||
commands = [ '-f', 'concat', '-safe', '0', '-i', concat_video_file.name, '-c:v', 'copy', '-c:a', output_audio_encoder, '-y', os.path.abspath(output_path) ]
|
||||
process = run_ffmpeg(commands)
|
||||
process.communicate()
|
||||
remove_file(concat_video_path)
|
||||
@ -112,8 +153,9 @@ def copy_image(target_path : str, temp_image_resolution : str) -> bool:
|
||||
|
||||
|
||||
def finalize_image(target_path : str, output_path : str, output_image_resolution : str) -> bool:
|
||||
output_image_quality = state_manager.get_item('output_image_quality')
|
||||
temp_file_path = get_temp_file_path(target_path)
|
||||
output_image_compression = calc_image_compression(target_path, state_manager.get_item('output_image_quality'))
|
||||
output_image_compression = calc_image_compression(target_path, output_image_quality)
|
||||
commands = [ '-i', temp_file_path, '-s', str(output_image_resolution), '-q:v', str(output_image_compression), '-y', output_path ]
|
||||
return run_ffmpeg(commands).returncode == 0
|
||||
|
||||
@ -134,10 +176,10 @@ def read_audio_buffer(target_path : str, sample_rate : int, channel_total : int)
|
||||
return None
|
||||
|
||||
|
||||
def restore_audio(target_path : str, output_path : str, output_video_fps : Fps) -> bool:
|
||||
trim_frame_start = state_manager.get_item('trim_frame_start')
|
||||
trim_frame_end = state_manager.get_item('trim_frame_end')
|
||||
def restore_audio(target_path : str, output_path : str, output_video_fps : Fps, trim_frame_start : int, trim_frame_end : int) -> bool:
|
||||
output_audio_encoder = state_manager.get_item('output_audio_encoder')
|
||||
temp_file_path = get_temp_file_path(target_path)
|
||||
temp_video_duration = detect_video_duration(temp_file_path)
|
||||
commands = [ '-i', temp_file_path ]
|
||||
|
||||
if isinstance(trim_frame_start, int):
|
||||
@ -146,13 +188,15 @@ def restore_audio(target_path : str, output_path : str, output_video_fps : Fps)
|
||||
if isinstance(trim_frame_end, int):
|
||||
end_time = trim_frame_end / output_video_fps
|
||||
commands.extend([ '-to', str(end_time) ])
|
||||
commands.extend([ '-i', target_path, '-c:v', 'copy', '-c:a', state_manager.get_item('output_audio_encoder'), '-map', '0:v:0', '-map', '1:a:0', '-shortest', '-y', output_path ])
|
||||
commands.extend([ '-i', target_path, '-c:v', 'copy', '-c:a', output_audio_encoder, '-map', '0:v:0', '-map', '1:a:0', '-t', str(temp_video_duration), '-y', output_path ])
|
||||
return run_ffmpeg(commands).returncode == 0
|
||||
|
||||
|
||||
def replace_audio(target_path : str, audio_path : str, output_path : str) -> bool:
|
||||
output_audio_encoder = state_manager.get_item('output_audio_encoder')
|
||||
temp_file_path = get_temp_file_path(target_path)
|
||||
commands = [ '-i', temp_file_path, '-i', audio_path, '-c:a', state_manager.get_item('output_audio_encoder'), '-af', 'apad', '-shortest', '-y', output_path ]
|
||||
temp_video_duration = detect_video_duration(temp_file_path)
|
||||
commands = [ '-i', temp_file_path, '-i', audio_path, '-c:v', 'copy', '-c:a', output_audio_encoder, '-t', str(temp_video_duration), '-y', output_path ]
|
||||
return run_ffmpeg(commands).returncode == 0
|
||||
|
||||
|
||||
@ -174,3 +218,13 @@ def map_amf_preset(output_video_preset : OutputVideoPreset) -> Optional[str]:
|
||||
if output_video_preset in [ 'slow', 'slower', 'veryslow' ]:
|
||||
return 'quality'
|
||||
return None
|
||||
|
||||
|
||||
def map_qsv_preset(output_video_preset : OutputVideoPreset) -> Optional[str]:
|
||||
if output_video_preset in [ 'ultrafast', 'superfast', 'veryfast', 'faster', 'fast' ]:
|
||||
return 'fast'
|
||||
if output_video_preset == 'medium':
|
||||
return 'medium'
|
||||
if output_video_preset in [ 'slow', 'slower', 'veryslow' ]:
|
||||
return 'slow'
|
||||
return None
|
||||
|
@ -1,3 +1,4 @@
|
||||
import glob
|
||||
import os
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
@ -6,6 +7,7 @@ from typing import List, Optional
|
||||
import filetype
|
||||
|
||||
from facefusion.common_helper import is_windows
|
||||
from facefusion.typing import File
|
||||
|
||||
if is_windows():
|
||||
import ctypes
|
||||
@ -125,14 +127,32 @@ def create_directory(directory_path : str) -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def list_directory(directory_path : str) -> Optional[List[str]]:
|
||||
def list_directory(directory_path : str) -> Optional[List[File]]:
|
||||
if is_directory(directory_path):
|
||||
files = os.listdir(directory_path)
|
||||
files = [ Path(file).stem for file in files if not Path(file).stem.startswith(('.', '__')) ]
|
||||
return sorted(files)
|
||||
file_paths = sorted(os.listdir(directory_path))
|
||||
files: List[File] = []
|
||||
|
||||
for file_path in file_paths:
|
||||
file_name, file_extension = os.path.splitext(file_path)
|
||||
|
||||
if not file_name.startswith(('.', '__')):
|
||||
files.append(
|
||||
{
|
||||
'name': file_name,
|
||||
'extension': file_extension,
|
||||
'path': os.path.join(directory_path, file_path)
|
||||
})
|
||||
|
||||
return files
|
||||
return None
|
||||
|
||||
|
||||
def resolve_file_pattern(file_pattern : str) -> List[str]:
|
||||
if in_directory(file_pattern):
|
||||
return sorted(glob.glob(file_pattern))
|
||||
return []
|
||||
|
||||
|
||||
def remove_directory(directory_path : str) -> bool:
|
||||
if is_directory(directory_path):
|
||||
shutil.rmtree(directory_path, ignore_errors = True)
|
||||
|
@ -1,20 +1,18 @@
|
||||
from functools import lru_cache
|
||||
from time import sleep
|
||||
from typing import List
|
||||
|
||||
import onnx
|
||||
from onnxruntime import InferenceSession
|
||||
|
||||
from facefusion import process_manager, state_manager
|
||||
from facefusion.app_context import detect_app_context
|
||||
from facefusion.execution import create_execution_providers, has_execution_provider
|
||||
from facefusion.execution import create_inference_execution_providers
|
||||
from facefusion.thread_helper import thread_lock
|
||||
from facefusion.typing import DownloadSet, ExecutionProviderKey, InferencePool, InferencePoolSet, ModelInitializer
|
||||
from facefusion.typing import DownloadSet, ExecutionProvider, InferencePool, InferencePoolSet
|
||||
|
||||
INFERENCE_POOLS : InferencePoolSet =\
|
||||
{
|
||||
'cli': {}, # type:ignore[typeddict-item]
|
||||
'ui': {} # type:ignore[typeddict-item]
|
||||
'cli': {}, #type:ignore[typeddict-item]
|
||||
'ui': {} #type:ignore[typeddict-item]
|
||||
}
|
||||
|
||||
|
||||
@ -32,17 +30,16 @@ def get_inference_pool(model_context : str, model_sources : DownloadSet) -> Infe
|
||||
if app_context == 'ui' and INFERENCE_POOLS.get('cli').get(inference_context):
|
||||
INFERENCE_POOLS['ui'][inference_context] = INFERENCE_POOLS.get('cli').get(inference_context)
|
||||
if not INFERENCE_POOLS.get(app_context).get(inference_context):
|
||||
execution_provider_keys = resolve_execution_provider_keys(model_context)
|
||||
INFERENCE_POOLS[app_context][inference_context] = create_inference_pool(model_sources, state_manager.get_item('execution_device_id'), execution_provider_keys)
|
||||
INFERENCE_POOLS[app_context][inference_context] = create_inference_pool(model_sources, state_manager.get_item('execution_device_id'), state_manager.get_item('execution_providers'))
|
||||
|
||||
return INFERENCE_POOLS.get(app_context).get(inference_context)
|
||||
|
||||
|
||||
def create_inference_pool(model_sources : DownloadSet, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferencePool:
|
||||
def create_inference_pool(model_sources : DownloadSet, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferencePool:
|
||||
inference_pool : InferencePool = {}
|
||||
|
||||
for model_name in model_sources.keys():
|
||||
inference_pool[model_name] = create_inference_session(model_sources.get(model_name).get('path'), execution_device_id, execution_provider_keys)
|
||||
inference_pool[model_name] = create_inference_session(model_sources.get(model_name).get('path'), execution_device_id, execution_providers)
|
||||
return inference_pool
|
||||
|
||||
|
||||
@ -56,24 +53,11 @@ def clear_inference_pool(model_context : str) -> None:
|
||||
del INFERENCE_POOLS[app_context][inference_context]
|
||||
|
||||
|
||||
def create_inference_session(model_path : str, execution_device_id : str, execution_provider_keys : List[ExecutionProviderKey]) -> InferenceSession:
|
||||
execution_providers = create_execution_providers(execution_device_id, execution_provider_keys)
|
||||
return InferenceSession(model_path, providers = execution_providers)
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def get_static_model_initializer(model_path : str) -> ModelInitializer:
|
||||
model = onnx.load(model_path)
|
||||
return onnx.numpy_helper.to_array(model.graph.initializer[-1])
|
||||
|
||||
|
||||
def resolve_execution_provider_keys(model_context : str) -> List[ExecutionProviderKey]:
|
||||
if has_execution_provider('coreml') and (model_context.startswith('facefusion.processors.modules.age_modifier') or model_context.startswith('facefusion.processors.modules.frame_colorizer')):
|
||||
return [ 'cpu' ]
|
||||
return state_manager.get_item('execution_providers')
|
||||
def create_inference_session(model_path : str, execution_device_id : str, execution_providers : List[ExecutionProvider]) -> InferenceSession:
|
||||
inference_execution_providers = create_inference_execution_providers(execution_device_id, execution_providers)
|
||||
return InferenceSession(model_path, providers = inference_execution_providers)
|
||||
|
||||
|
||||
def get_inference_context(model_context : str) -> str:
|
||||
execution_provider_keys = resolve_execution_provider_keys(model_context)
|
||||
inference_context = model_context + '.' + '_'.join(execution_provider_keys)
|
||||
inference_context = model_context + '.' + '_'.join(state_manager.get_item('execution_providers'))
|
||||
return inference_context
|
||||
|
@ -13,11 +13,11 @@ from facefusion.common_helper import is_linux, is_macos, is_windows
|
||||
ONNXRUNTIMES : Dict[str, Tuple[str, str]] = {}
|
||||
|
||||
if is_macos():
|
||||
ONNXRUNTIMES['default'] = ('onnxruntime', '1.19.2')
|
||||
ONNXRUNTIMES['default'] = ('onnxruntime', '1.20.1')
|
||||
else:
|
||||
ONNXRUNTIMES['default'] = ('onnxruntime', '1.19.2')
|
||||
ONNXRUNTIMES['cuda'] = ('onnxruntime-gpu', '1.19.2')
|
||||
ONNXRUNTIMES['openvino'] = ('onnxruntime-openvino', '1.19.0')
|
||||
ONNXRUNTIMES['default'] = ('onnxruntime', '1.20.1')
|
||||
ONNXRUNTIMES['cuda'] = ('onnxruntime-gpu', '1.20.1')
|
||||
ONNXRUNTIMES['openvino'] = ('onnxruntime-openvino', '1.20.0')
|
||||
if is_linux():
|
||||
ONNXRUNTIMES['rocm'] = ('onnxruntime-rocm', '1.18.0')
|
||||
if is_windows():
|
||||
@ -72,7 +72,7 @@ def run(program : ArgumentParser) -> None:
|
||||
os.path.join(os.getenv('CONDA_PREFIX'), 'lib'),
|
||||
os.path.join(os.getenv('CONDA_PREFIX'), 'lib', python_id, 'site-packages', 'tensorrt_libs')
|
||||
])
|
||||
library_paths = [ library_path for library_path in library_paths if os.path.exists(library_path) ]
|
||||
library_paths = list(dict.fromkeys([ library_path for library_path in library_paths if os.path.exists(library_path) ]))
|
||||
|
||||
subprocess.call([ shutil.which('conda'), 'env', 'config', 'vars', 'set', 'LD_LIBRARY_PATH=' + os.pathsep.join(library_paths) ])
|
||||
|
||||
@ -85,10 +85,9 @@ def run(program : ArgumentParser) -> None:
|
||||
os.path.join(os.getenv('CONDA_PREFIX'), 'Lib'),
|
||||
os.path.join(os.getenv('CONDA_PREFIX'), 'Lib', 'site-packages', 'tensorrt_libs')
|
||||
])
|
||||
library_paths = [ library_path for library_path in library_paths if os.path.exists(library_path) ]
|
||||
library_paths = list(dict.fromkeys([ library_path for library_path in library_paths if os.path.exists(library_path) ]))
|
||||
|
||||
subprocess.call([ shutil.which('conda'), 'env', 'config', 'vars', 'set', 'PATH=' + os.pathsep.join(library_paths) ])
|
||||
|
||||
if onnxruntime_version < '1.19.0':
|
||||
subprocess.call([ shutil.which('pip'), 'install', 'numpy==1.26.4', '--force-reinstall' ])
|
||||
subprocess.call([ shutil.which('pip'), 'install', 'python-multipart==0.0.12', '--force-reinstall' ])
|
||||
|
@ -1,14 +1,12 @@
|
||||
import glob
|
||||
import os
|
||||
from copy import copy
|
||||
from typing import List, Optional
|
||||
|
||||
from facefusion.choices import job_statuses
|
||||
import facefusion.choices
|
||||
from facefusion.date_helper import get_current_date_time
|
||||
from facefusion.filesystem import create_directory, is_directory, is_file, move_file, remove_directory, remove_file
|
||||
from facefusion.filesystem import create_directory, is_directory, is_file, move_file, remove_directory, remove_file, resolve_file_pattern
|
||||
from facefusion.jobs.job_helper import get_step_output_path
|
||||
from facefusion.json import read_json, write_json
|
||||
from facefusion.temp_helper import create_base_directory
|
||||
from facefusion.typing import Args, Job, JobSet, JobStatus, JobStep, JobStepStatus
|
||||
|
||||
JOBS_PATH : Optional[str] = None
|
||||
@ -18,9 +16,8 @@ def init_jobs(jobs_path : str) -> bool:
|
||||
global JOBS_PATH
|
||||
|
||||
JOBS_PATH = jobs_path
|
||||
job_status_paths = [ os.path.join(JOBS_PATH, job_status) for job_status in job_statuses ]
|
||||
job_status_paths = [ os.path.join(JOBS_PATH, job_status) for job_status in facefusion.choices.job_statuses ]
|
||||
|
||||
create_base_directory()
|
||||
for job_status_path in job_status_paths:
|
||||
create_directory(job_status_path)
|
||||
return all(is_directory(status_path) for status_path in job_status_paths)
|
||||
@ -88,12 +85,12 @@ def find_jobs(job_status : JobStatus) -> JobSet:
|
||||
|
||||
def find_job_ids(job_status : JobStatus) -> List[str]:
|
||||
job_pattern = os.path.join(JOBS_PATH, job_status, '*.json')
|
||||
job_files = glob.glob(job_pattern)
|
||||
job_files.sort(key = os.path.getmtime)
|
||||
job_paths = resolve_file_pattern(job_pattern)
|
||||
job_paths.sort(key = os.path.getmtime)
|
||||
job_ids = []
|
||||
|
||||
for job_file in job_files:
|
||||
job_id, _ = os.path.splitext(os.path.basename(job_file))
|
||||
for job_path in job_paths:
|
||||
job_id, _ = os.path.splitext(os.path.basename(job_path))
|
||||
job_ids.append(job_id)
|
||||
return job_ids
|
||||
|
||||
@ -248,9 +245,9 @@ def find_job_path(job_id : str) -> Optional[str]:
|
||||
job_file_name = get_job_file_name(job_id)
|
||||
|
||||
if job_file_name:
|
||||
for job_status in job_statuses:
|
||||
for job_status in facefusion.choices.job_statuses:
|
||||
job_pattern = os.path.join(JOBS_PATH, job_status, job_file_name)
|
||||
job_paths = glob.glob(job_pattern)
|
||||
job_paths = resolve_file_pattern(job_pattern)
|
||||
|
||||
for job_path in job_paths:
|
||||
return job_path
|
||||
|
@ -1,14 +1,14 @@
|
||||
from logging import Logger, basicConfig, getLogger
|
||||
from typing import Tuple
|
||||
|
||||
from facefusion.choices import log_level_set
|
||||
import facefusion.choices
|
||||
from facefusion.common_helper import get_first, get_last
|
||||
from facefusion.typing import LogLevel, TableContents, TableHeaders
|
||||
|
||||
|
||||
def init(log_level : LogLevel) -> None:
|
||||
basicConfig(format = '%(message)s')
|
||||
get_package_logger().setLevel(log_level_set.get(log_level))
|
||||
get_package_logger().setLevel(facefusion.choices.log_level_set.get(log_level))
|
||||
|
||||
|
||||
def get_package_logger() -> Logger:
|
||||
|
@ -4,7 +4,7 @@ METADATA =\
|
||||
{
|
||||
'name': 'FaceFusion',
|
||||
'description': 'Industry leading face manipulation platform',
|
||||
'version': '3.0.1',
|
||||
'version': '3.1.0',
|
||||
'license': 'MIT',
|
||||
'author': 'Henry Ruhs',
|
||||
'url': 'https://facefusion.io'
|
||||
|
11
facefusion/model_helper.py
Normal file
11
facefusion/model_helper.py
Normal file
@ -0,0 +1,11 @@
|
||||
from functools import lru_cache
|
||||
|
||||
import onnx
|
||||
|
||||
from facefusion.typing import ModelInitializer
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def get_static_model_initializer(model_path : str) -> ModelInitializer:
|
||||
model = onnx.load(model_path)
|
||||
return onnx.numpy_helper.to_array(model.graph.initializer[-1])
|
@ -1,9 +1,170 @@
|
||||
from typing import List, Sequence
|
||||
|
||||
from facefusion.common_helper import create_float_range, create_int_range
|
||||
from facefusion.processors.typing import AgeModifierModel, ExpressionRestorerModel, FaceDebuggerItem, FaceEditorModel, FaceEnhancerModel, FaceSwapperSet, FrameColorizerModel, FrameEnhancerModel, LipSyncerModel
|
||||
from facefusion.filesystem import list_directory, resolve_relative_path
|
||||
from facefusion.processors.typing import AgeModifierModel, DeepSwapperModel, ExpressionRestorerModel, FaceDebuggerItem, FaceEditorModel, FaceEnhancerModel, FaceSwapperModel, FaceSwapperSet, FrameColorizerModel, FrameEnhancerModel, LipSyncerModel
|
||||
|
||||
age_modifier_models : List[AgeModifierModel] = [ 'styleganex_age' ]
|
||||
deep_swapper_models : List[DeepSwapperModel] =\
|
||||
[
|
||||
'druuzil/adrianne_palicki_384',
|
||||
'druuzil/agnetha_falskog_224',
|
||||
'druuzil/alan_ritchson_320',
|
||||
'druuzil/alicia_vikander_320',
|
||||
'druuzil/amber_midthunder_320',
|
||||
'druuzil/andras_arato_384',
|
||||
'druuzil/andrew_tate_320',
|
||||
'druuzil/anne_hathaway_320',
|
||||
'druuzil/anya_chalotra_320',
|
||||
'druuzil/arnold_schwarzenegger_320',
|
||||
'druuzil/benjamin_affleck_320',
|
||||
'druuzil/benjamin_stiller_384',
|
||||
'druuzil/bradley_pitt_224',
|
||||
'druuzil/brie_larson_384',
|
||||
'druuzil/bryan_cranston_320',
|
||||
'druuzil/catherine_blanchett_352',
|
||||
'druuzil/christian_bale_320',
|
||||
'druuzil/christopher_hemsworth_320',
|
||||
'druuzil/christoph_waltz_384',
|
||||
'druuzil/cillian_murphy_320',
|
||||
'druuzil/cobie_smulders_256',
|
||||
'druuzil/dwayne_johnson_384',
|
||||
'druuzil/edward_norton_320',
|
||||
'druuzil/elisabeth_shue_320',
|
||||
'druuzil/elizabeth_olsen_384',
|
||||
'druuzil/elon_musk_320',
|
||||
'druuzil/emily_blunt_320',
|
||||
'druuzil/emma_stone_384',
|
||||
'druuzil/emma_watson_320',
|
||||
'druuzil/erin_moriarty_384',
|
||||
'druuzil/eva_green_320',
|
||||
'druuzil/ewan_mcgregor_320',
|
||||
'druuzil/florence_pugh_320',
|
||||
'druuzil/freya_allan_320',
|
||||
'druuzil/gary_cole_224',
|
||||
'druuzil/gigi_hadid_224',
|
||||
'druuzil/harrison_ford_384',
|
||||
'druuzil/hayden_christensen_320',
|
||||
'druuzil/heath_ledger_320',
|
||||
'druuzil/henry_cavill_448',
|
||||
'druuzil/hugh_jackman_384',
|
||||
'druuzil/idris_elba_320',
|
||||
'druuzil/jack_nicholson_320',
|
||||
'druuzil/james_mcavoy_320',
|
||||
'druuzil/james_varney_320',
|
||||
'druuzil/jason_momoa_320',
|
||||
'druuzil/jason_statham_320',
|
||||
'druuzil/jennifer_connelly_384',
|
||||
'druuzil/jimmy_donaldson_320',
|
||||
'druuzil/jordan_peterson_384',
|
||||
'druuzil/karl_urban_224',
|
||||
'druuzil/kate_beckinsale_384',
|
||||
'druuzil/laurence_fishburne_384',
|
||||
'druuzil/lili_reinhart_320',
|
||||
'druuzil/mads_mikkelsen_384',
|
||||
'druuzil/mary_winstead_320',
|
||||
'druuzil/margaret_qualley_384',
|
||||
'druuzil/melina_juergens_320',
|
||||
'druuzil/michael_fassbender_320',
|
||||
'druuzil/michael_fox_320',
|
||||
'druuzil/millie_bobby_brown_320',
|
||||
'druuzil/morgan_freeman_320',
|
||||
'druuzil/patrick_stewart_320',
|
||||
'druuzil/rebecca_ferguson_320',
|
||||
'druuzil/scarlett_johansson_320',
|
||||
'druuzil/seth_macfarlane_384',
|
||||
'druuzil/thomas_cruise_320',
|
||||
'druuzil/thomas_hanks_384',
|
||||
'edel/emma_roberts_224',
|
||||
'edel/ivanka_trump_224',
|
||||
'edel/lize_dzjabrailova_224',
|
||||
'edel/sidney_sweeney_224',
|
||||
'edel/winona_ryder_224',
|
||||
'iperov/alexandra_daddario_224',
|
||||
'iperov/alexei_navalny_224',
|
||||
'iperov/amber_heard_224',
|
||||
'iperov/dilraba_dilmurat_224',
|
||||
'iperov/elon_musk_224',
|
||||
'iperov/emilia_clarke_224',
|
||||
'iperov/emma_watson_224',
|
||||
'iperov/erin_moriarty_224',
|
||||
'iperov/jackie_chan_224',
|
||||
'iperov/james_carrey_224',
|
||||
'iperov/jason_statham_320',
|
||||
'iperov/keanu_reeves_320',
|
||||
'iperov/margot_robbie_224',
|
||||
'iperov/natalie_dormer_224',
|
||||
'iperov/nicolas_coppola_224',
|
||||
'iperov/robert_downey_224',
|
||||
'iperov/rowan_atkinson_224',
|
||||
'iperov/ryan_reynolds_224',
|
||||
'iperov/scarlett_johansson_224',
|
||||
'iperov/sylvester_stallone_224',
|
||||
'iperov/thomas_cruise_224',
|
||||
'iperov/thomas_holland_224',
|
||||
'iperov/vin_diesel_224',
|
||||
'iperov/vladimir_putin_224',
|
||||
'jen/angelica_trae_288',
|
||||
'jen/ella_freya_224',
|
||||
'jen/emma_myers_320',
|
||||
'jen/evie_pickerill_224',
|
||||
'jen/kang_hyewon_320',
|
||||
'jen/maddie_mead_224',
|
||||
'jen/nicole_turnbull_288',
|
||||
'mats/alica_schmidt_320',
|
||||
'mats/ashley_alexiss_224',
|
||||
'mats/billie_eilish_224',
|
||||
'mats/brie_larson_224',
|
||||
'mats/cara_delevingne_224',
|
||||
'mats/carolin_kebekus_224',
|
||||
'mats/chelsea_clinton_224',
|
||||
'mats/claire_boucher_224',
|
||||
'mats/corinna_kopf_224',
|
||||
'mats/florence_pugh_224',
|
||||
'mats/hillary_clinton_224',
|
||||
'mats/jenna_fischer_224',
|
||||
'mats/kim_jisoo_320',
|
||||
'mats/mica_suarez_320',
|
||||
'mats/shailene_woodley_224',
|
||||
'mats/shraddha_kapoor_320',
|
||||
'mats/yu_jimin_352',
|
||||
'rumateus/alison_brie_224',
|
||||
'rumateus/amber_heard_224',
|
||||
'rumateus/angelina_jolie_224',
|
||||
'rumateus/aubrey_plaza_224',
|
||||
'rumateus/bridget_regan_224',
|
||||
'rumateus/cobie_smulders_224',
|
||||
'rumateus/deborah_woll_224',
|
||||
'rumateus/dua_lipa_224',
|
||||
'rumateus/emma_stone_224',
|
||||
'rumateus/hailee_steinfeld_224',
|
||||
'rumateus/hilary_duff_224',
|
||||
'rumateus/jessica_alba_224',
|
||||
'rumateus/jessica_biel_224',
|
||||
'rumateus/john_cena_224',
|
||||
'rumateus/kim_kardashian_224',
|
||||
'rumateus/kristen_bell_224',
|
||||
'rumateus/lucy_liu_224',
|
||||
'rumateus/margot_robbie_224',
|
||||
'rumateus/megan_fox_224',
|
||||
'rumateus/meghan_markle_224',
|
||||
'rumateus/millie_bobby_brown_224',
|
||||
'rumateus/natalie_portman_224',
|
||||
'rumateus/nicki_minaj_224',
|
||||
'rumateus/olivia_wilde_224',
|
||||
'rumateus/shay_mitchell_224',
|
||||
'rumateus/sophie_turner_224',
|
||||
'rumateus/taylor_swift_224'
|
||||
]
|
||||
|
||||
custom_model_files = list_directory(resolve_relative_path('../.assets/models/custom'))
|
||||
|
||||
if custom_model_files:
|
||||
|
||||
for model_file in custom_model_files:
|
||||
model_id = '/'.join([ 'custom', model_file.get('name') ])
|
||||
deep_swapper_models.append(model_id)
|
||||
|
||||
expression_restorer_models : List[ExpressionRestorerModel] = [ 'live_portrait' ]
|
||||
face_debugger_items : List[FaceDebuggerItem] = [ 'bounding-box', 'face-landmark-5', 'face-landmark-5/68', 'face-landmark-68', 'face-landmark-68/5', 'face-mask', 'face-detector-score', 'face-landmarker-score', 'age', 'gender', 'race' ]
|
||||
face_editor_models : List[FaceEditorModel] = [ 'live_portrait' ]
|
||||
@ -14,18 +175,21 @@ face_swapper_set : FaceSwapperSet =\
|
||||
'ghost_1_256': [ '256x256', '512x512', '768x768', '1024x1024' ],
|
||||
'ghost_2_256': [ '256x256', '512x512', '768x768', '1024x1024' ],
|
||||
'ghost_3_256': [ '256x256', '512x512', '768x768', '1024x1024' ],
|
||||
'hififace_unofficial_256': [ '256x256', '512x512', '768x768', '1024x1024' ],
|
||||
'inswapper_128': [ '128x128', '256x256', '384x384', '512x512', '768x768', '1024x1024' ],
|
||||
'inswapper_128_fp16': [ '128x128', '256x256', '384x384', '512x512', '768x768', '1024x1024' ],
|
||||
'simswap_256': [ '256x256', '512x512', '768x768', '1024x1024' ],
|
||||
'simswap_unofficial_512': [ '512x512', '768x768', '1024x1024' ],
|
||||
'uniface_256': [ '256x256', '512x512', '768x768', '1024x1024' ]
|
||||
}
|
||||
face_swapper_models : List[FaceSwapperModel] = list(face_swapper_set.keys())
|
||||
frame_colorizer_models : List[FrameColorizerModel] = [ 'ddcolor', 'ddcolor_artistic', 'deoldify', 'deoldify_artistic', 'deoldify_stable' ]
|
||||
frame_colorizer_sizes : List[str] = [ '192x192', '256x256', '384x384', '512x512' ]
|
||||
frame_enhancer_models : List[FrameEnhancerModel] = [ 'clear_reality_x4', 'lsdir_x4', 'nomos8k_sc_x4', 'real_esrgan_x2', 'real_esrgan_x2_fp16', 'real_esrgan_x4', 'real_esrgan_x4_fp16', 'real_esrgan_x8', 'real_esrgan_x8_fp16', 'real_hatgan_x4', 'span_kendata_x4', 'ultra_sharp_x4' ]
|
||||
frame_enhancer_models : List[FrameEnhancerModel] = [ 'clear_reality_x4', 'lsdir_x4', 'nomos8k_sc_x4', 'real_esrgan_x2', 'real_esrgan_x2_fp16', 'real_esrgan_x4', 'real_esrgan_x4_fp16', 'real_esrgan_x8', 'real_esrgan_x8_fp16', 'real_hatgan_x4', 'real_web_photo_x4', 'realistic_rescaler_x4', 'remacri_x4', 'siax_x4', 'span_kendata_x4', 'swin2_sr_x4', 'ultra_sharp_x4' ]
|
||||
lip_syncer_models : List[LipSyncerModel] = [ 'wav2lip_96', 'wav2lip_gan_96' ]
|
||||
|
||||
age_modifier_direction_range : Sequence[int] = create_int_range(-100, 100, 1)
|
||||
deep_swapper_morph_range : Sequence[int] = create_int_range(0, 100, 1)
|
||||
expression_restorer_factor_range : Sequence[int] = create_int_range(0, 100, 1)
|
||||
face_editor_eyebrow_direction_range : Sequence[float] = create_float_range(-1.0, 1.0, 0.05)
|
||||
face_editor_eye_gaze_horizontal_range : Sequence[float] = create_float_range(-1.0, 1.0, 0.05)
|
||||
@ -42,5 +206,6 @@ face_editor_head_pitch_range : Sequence[float] = create_float_range(-1.0, 1.0, 0
|
||||
face_editor_head_yaw_range : Sequence[float] = create_float_range(-1.0, 1.0, 0.05)
|
||||
face_editor_head_roll_range : Sequence[float] = create_float_range(-1.0, 1.0, 0.05)
|
||||
face_enhancer_blend_range : Sequence[int] = create_int_range(0, 100, 1)
|
||||
face_enhancer_weight_range : Sequence[float] = create_float_range(0.0, 1.0, 0.05)
|
||||
frame_colorizer_blend_range : Sequence[int] = create_int_range(0, 100, 1)
|
||||
frame_enhancer_blend_range : Sequence[int] = create_int_range(0, 100, 1)
|
||||
|
@ -53,21 +53,10 @@ def get_processors_modules(processors : List[str]) -> List[ModuleType]:
|
||||
return processor_modules
|
||||
|
||||
|
||||
def clear_processors_modules(processors : List[str]) -> None:
|
||||
for processor in processors:
|
||||
processor_module = load_processor_module(processor)
|
||||
processor_module.clear_inference_pool()
|
||||
|
||||
|
||||
def multi_process_frames(source_paths : List[str], temp_frame_paths : List[str], process_frames : ProcessFrames) -> None:
|
||||
queue_payloads = create_queue_payloads(temp_frame_paths)
|
||||
with tqdm(total = len(queue_payloads), desc = wording.get('processing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
|
||||
progress.set_postfix(
|
||||
{
|
||||
'execution_providers': state_manager.get_item('execution_providers'),
|
||||
'execution_thread_count': state_manager.get_item('execution_thread_count'),
|
||||
'execution_queue_count': state_manager.get_item('execution_queue_count')
|
||||
})
|
||||
progress.set_postfix(execution_providers = state_manager.get_item('execution_providers'))
|
||||
with ThreadPoolExecutor(max_workers = state_manager.get_item('execution_thread_count')) as executor:
|
||||
futures = []
|
||||
queue : Queue[QueuePayload] = create_queue(queue_payloads)
|
||||
|
@ -1,17 +1,18 @@
|
||||
from argparse import ArgumentParser
|
||||
from typing import Any, List
|
||||
from functools import lru_cache
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
import numpy
|
||||
from cv2.typing import Size
|
||||
from numpy.typing import NDArray
|
||||
|
||||
import facefusion.choices
|
||||
import facefusion.jobs.job_manager
|
||||
import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import create_int_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.execution import has_execution_provider
|
||||
from facefusion.face_analyser import get_many_faces, get_one_face
|
||||
from facefusion.face_helper import merge_matrix, paste_back, scale_face_landmark_5, warp_face_by_face_landmark_5
|
||||
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
|
||||
@ -19,21 +20,24 @@ from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
|
||||
from facefusion.face_store import get_reference_faces
|
||||
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.typing import AgeModifierInputs
|
||||
from facefusion.processors.typing import AgeModifierDirection, AgeModifierInputs
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, Mask, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import match_frame_color, read_image, read_static_image, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'styleganex_age':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'age_modifier':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/styleganex_age.hash',
|
||||
'url': resolve_download_url('models-3.1.0', 'styleganex_age.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/styleganex_age.hash')
|
||||
}
|
||||
},
|
||||
@ -41,30 +45,36 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'age_modifier':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/styleganex_age.onnx',
|
||||
'url': resolve_download_url('models-3.1.0', 'styleganex_age.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/styleganex_age.onnx')
|
||||
}
|
||||
},
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
'templates':
|
||||
{
|
||||
'target': 'ffhq_512',
|
||||
'target_with_background': 'styleganex_384'
|
||||
},
|
||||
'sizes':
|
||||
{
|
||||
'target': (256, 256),
|
||||
'target_with_background': (384, 384)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('age_modifier_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('age_modifier_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
age_modifier_model = state_manager.get_item('age_modifier_model')
|
||||
return MODEL_SET.get(age_modifier_model)
|
||||
return create_static_model_set('full').get(age_modifier_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
@ -81,11 +91,10 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
@ -115,15 +124,14 @@ def post_process() -> None:
|
||||
|
||||
|
||||
def modify_age(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
|
||||
model_template = get_model_options().get('template')
|
||||
model_size = get_model_options().get('size')
|
||||
crop_size = (model_size[0] // 2, model_size[1] // 2)
|
||||
model_templates = get_model_options().get('templates')
|
||||
model_sizes = get_model_options().get('sizes')
|
||||
face_landmark_5 = target_face.landmark_set.get('5/68').copy()
|
||||
extend_face_landmark_5 = scale_face_landmark_5(face_landmark_5, 2.0)
|
||||
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, crop_size)
|
||||
extend_vision_frame, extend_affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, extend_face_landmark_5, model_template, model_size)
|
||||
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_templates.get('target'), model_sizes.get('target'))
|
||||
extend_face_landmark_5 = scale_face_landmark_5(face_landmark_5, 0.875)
|
||||
extend_vision_frame, extend_affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, extend_face_landmark_5, model_templates.get('target_with_background'), model_sizes.get('target_with_background'))
|
||||
extend_vision_frame_raw = extend_vision_frame.copy()
|
||||
box_mask = create_static_box_mask(model_size, state_manager.get_item('face_mask_blur'), (0, 0, 0, 0))
|
||||
box_mask = create_static_box_mask(model_sizes.get('target_with_background'), state_manager.get_item('face_mask_blur'), (0, 0, 0, 0))
|
||||
crop_masks =\
|
||||
[
|
||||
box_mask
|
||||
@ -132,31 +140,36 @@ def modify_age(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFra
|
||||
if 'occlusion' in state_manager.get_item('face_mask_types'):
|
||||
occlusion_mask = create_occlusion_mask(crop_vision_frame)
|
||||
combined_matrix = merge_matrix([ extend_affine_matrix, cv2.invertAffineTransform(affine_matrix) ])
|
||||
occlusion_mask = cv2.warpAffine(occlusion_mask, combined_matrix, model_size)
|
||||
occlusion_mask = cv2.warpAffine(occlusion_mask, combined_matrix, model_sizes.get('target_with_background'))
|
||||
crop_masks.append(occlusion_mask)
|
||||
|
||||
crop_vision_frame = prepare_vision_frame(crop_vision_frame)
|
||||
extend_vision_frame = prepare_vision_frame(extend_vision_frame)
|
||||
extend_vision_frame = forward(crop_vision_frame, extend_vision_frame)
|
||||
age_modifier_direction = numpy.array(numpy.interp(state_manager.get_item('age_modifier_direction'), [-100, 100], [2.5, -2.5])).astype(numpy.float32)
|
||||
extend_vision_frame = forward(crop_vision_frame, extend_vision_frame, age_modifier_direction)
|
||||
extend_vision_frame = normalize_extend_frame(extend_vision_frame)
|
||||
extend_vision_frame = fix_color(extend_vision_frame_raw, extend_vision_frame)
|
||||
extend_crop_mask = cv2.pyrUp(numpy.minimum.reduce(crop_masks).clip(0, 1))
|
||||
extend_affine_matrix *= extend_vision_frame.shape[0] / 512
|
||||
paste_vision_frame = paste_back(temp_vision_frame, extend_vision_frame, extend_crop_mask, extend_affine_matrix)
|
||||
extend_vision_frame = match_frame_color(extend_vision_frame_raw, extend_vision_frame)
|
||||
extend_affine_matrix *= (model_sizes.get('target')[0] * 4) / model_sizes.get('target_with_background')[0]
|
||||
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
|
||||
crop_mask = cv2.resize(crop_mask, (model_sizes.get('target')[0] * 4, model_sizes.get('target')[1] * 4))
|
||||
paste_vision_frame = paste_back(temp_vision_frame, extend_vision_frame, crop_mask, extend_affine_matrix)
|
||||
return paste_vision_frame
|
||||
|
||||
|
||||
def forward(crop_vision_frame : VisionFrame, extend_vision_frame : VisionFrame) -> VisionFrame:
|
||||
def forward(crop_vision_frame : VisionFrame, extend_vision_frame : VisionFrame, age_modifier_direction : AgeModifierDirection) -> VisionFrame:
|
||||
age_modifier = get_inference_pool().get('age_modifier')
|
||||
age_modifier_inputs = {}
|
||||
|
||||
if has_execution_provider('coreml'):
|
||||
age_modifier.set_providers([ facefusion.choices.execution_provider_set.get('cpu') ])
|
||||
|
||||
for age_modifier_input in age_modifier.get_inputs():
|
||||
if age_modifier_input.name == 'target':
|
||||
age_modifier_inputs[age_modifier_input.name] = crop_vision_frame
|
||||
if age_modifier_input.name == 'target_with_background':
|
||||
age_modifier_inputs[age_modifier_input.name] = extend_vision_frame
|
||||
if age_modifier_input.name == 'direction':
|
||||
age_modifier_inputs[age_modifier_input.name] = prepare_direction(state_manager.get_item('age_modifier_direction'))
|
||||
age_modifier_inputs[age_modifier_input.name] = age_modifier_direction
|
||||
|
||||
with thread_semaphore():
|
||||
crop_vision_frame = age_modifier.run(None, age_modifier_inputs)[0][0]
|
||||
@ -164,38 +177,6 @@ def forward(crop_vision_frame : VisionFrame, extend_vision_frame : VisionFrame)
|
||||
return crop_vision_frame
|
||||
|
||||
|
||||
def fix_color(extend_vision_frame_raw : VisionFrame, extend_vision_frame : VisionFrame) -> VisionFrame:
|
||||
color_difference = compute_color_difference(extend_vision_frame_raw, extend_vision_frame, (48, 48))
|
||||
color_difference_mask = create_static_box_mask(extend_vision_frame.shape[:2][::-1], 1.0, (0, 0, 0, 0))
|
||||
color_difference_mask = numpy.stack((color_difference_mask, ) * 3, axis = -1)
|
||||
extend_vision_frame = normalize_color_difference(color_difference, color_difference_mask, extend_vision_frame)
|
||||
return extend_vision_frame
|
||||
|
||||
|
||||
def compute_color_difference(extend_vision_frame_raw : VisionFrame, extend_vision_frame : VisionFrame, size : Size) -> VisionFrame:
|
||||
extend_vision_frame_raw = extend_vision_frame_raw.astype(numpy.float32) / 255
|
||||
extend_vision_frame_raw = cv2.resize(extend_vision_frame_raw, size, interpolation = cv2.INTER_AREA)
|
||||
extend_vision_frame = extend_vision_frame.astype(numpy.float32) / 255
|
||||
extend_vision_frame = cv2.resize(extend_vision_frame, size, interpolation = cv2.INTER_AREA)
|
||||
color_difference = extend_vision_frame_raw - extend_vision_frame
|
||||
return color_difference
|
||||
|
||||
|
||||
def normalize_color_difference(color_difference : VisionFrame, color_difference_mask : Mask, extend_vision_frame : VisionFrame) -> VisionFrame:
|
||||
color_difference = cv2.resize(color_difference, extend_vision_frame.shape[:2][::-1], interpolation = cv2.INTER_CUBIC)
|
||||
color_difference_mask = 1 - color_difference_mask.clip(0, 0.75)
|
||||
extend_vision_frame = extend_vision_frame.astype(numpy.float32) / 255
|
||||
extend_vision_frame += color_difference * color_difference_mask
|
||||
extend_vision_frame = extend_vision_frame.clip(0, 1)
|
||||
extend_vision_frame = numpy.multiply(extend_vision_frame, 255).astype(numpy.uint8)
|
||||
return extend_vision_frame
|
||||
|
||||
|
||||
def prepare_direction(direction : int) -> NDArray[Any]:
|
||||
direction = numpy.interp(float(direction), [ -100, 100 ], [ 2.5, -2.5 ]) #type:ignore[assignment]
|
||||
return numpy.array(direction).astype(numpy.float32)
|
||||
|
||||
|
||||
def prepare_vision_frame(vision_frame : VisionFrame) -> VisionFrame:
|
||||
vision_frame = vision_frame[:, :, ::-1] / 255.0
|
||||
vision_frame = (vision_frame - 0.5) / 0.5
|
||||
@ -204,12 +185,13 @@ def prepare_vision_frame(vision_frame : VisionFrame) -> VisionFrame:
|
||||
|
||||
|
||||
def normalize_extend_frame(extend_vision_frame : VisionFrame) -> VisionFrame:
|
||||
model_sizes = get_model_options().get('sizes')
|
||||
extend_vision_frame = numpy.clip(extend_vision_frame, -1, 1)
|
||||
extend_vision_frame = (extend_vision_frame + 1) / 2
|
||||
extend_vision_frame = extend_vision_frame.transpose(1, 2, 0).clip(0, 255)
|
||||
extend_vision_frame = (extend_vision_frame * 255.0)
|
||||
extend_vision_frame = extend_vision_frame.astype(numpy.uint8)[:, :, ::-1]
|
||||
extend_vision_frame = cv2.pyrDown(extend_vision_frame)
|
||||
extend_vision_frame = cv2.resize(extend_vision_frame, (model_sizes.get('target')[0] * 4, model_sizes.get('target')[1] * 4), interpolation = cv2.INTER_AREA)
|
||||
return extend_vision_frame
|
||||
|
||||
|
||||
|
444
facefusion/processors/modules/deep_swapper.py
Executable file
444
facefusion/processors/modules/deep_swapper.py
Executable file
@ -0,0 +1,444 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy
|
||||
from cv2.typing import Size
|
||||
|
||||
import facefusion.jobs.job_manager
|
||||
import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import create_int_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url_by_provider
|
||||
from facefusion.face_analyser import get_many_faces, get_one_face
|
||||
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
|
||||
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
|
||||
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
|
||||
from facefusion.face_store import get_reference_faces
|
||||
from facefusion.filesystem import in_directory, is_image, is_video, list_directory, resolve_relative_path, same_file_extension
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.typing import DeepSwapperInputs, DeepSwapperMorph
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Face, InferencePool, Mask, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import conditional_match_frame_color, read_image, read_static_image, write_image
|
||||
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
model_config = []
|
||||
|
||||
if download_scope == 'full':
|
||||
model_config.extend(
|
||||
[
|
||||
('druuzil', 'adrianne_palicki_384'),
|
||||
('druuzil', 'agnetha_falskog_224'),
|
||||
('druuzil', 'alan_ritchson_320'),
|
||||
('druuzil', 'alicia_vikander_320'),
|
||||
('druuzil', 'amber_midthunder_320'),
|
||||
('druuzil', 'andras_arato_384'),
|
||||
('druuzil', 'andrew_tate_320'),
|
||||
('druuzil', 'anne_hathaway_320'),
|
||||
('druuzil', 'anya_chalotra_320'),
|
||||
('druuzil', 'arnold_schwarzenegger_320'),
|
||||
('druuzil', 'benjamin_affleck_320'),
|
||||
('druuzil', 'benjamin_stiller_384'),
|
||||
('druuzil', 'bradley_pitt_224'),
|
||||
('druuzil', 'brie_larson_384'),
|
||||
('druuzil', 'bryan_cranston_320'),
|
||||
('druuzil', 'catherine_blanchett_352'),
|
||||
('druuzil', 'christian_bale_320'),
|
||||
('druuzil', 'christopher_hemsworth_320'),
|
||||
('druuzil', 'christoph_waltz_384'),
|
||||
('druuzil', 'cillian_murphy_320'),
|
||||
('druuzil', 'cobie_smulders_256'),
|
||||
('druuzil', 'dwayne_johnson_384'),
|
||||
('druuzil', 'edward_norton_320'),
|
||||
('druuzil', 'elisabeth_shue_320'),
|
||||
('druuzil', 'elizabeth_olsen_384'),
|
||||
('druuzil', 'elon_musk_320'),
|
||||
('druuzil', 'emily_blunt_320'),
|
||||
('druuzil', 'emma_stone_384'),
|
||||
('druuzil', 'emma_watson_320'),
|
||||
('druuzil', 'erin_moriarty_384'),
|
||||
('druuzil', 'eva_green_320'),
|
||||
('druuzil', 'ewan_mcgregor_320'),
|
||||
('druuzil', 'florence_pugh_320'),
|
||||
('druuzil', 'freya_allan_320'),
|
||||
('druuzil', 'gary_cole_224'),
|
||||
('druuzil', 'gigi_hadid_224'),
|
||||
('druuzil', 'harrison_ford_384'),
|
||||
('druuzil', 'hayden_christensen_320'),
|
||||
('druuzil', 'heath_ledger_320'),
|
||||
('druuzil', 'henry_cavill_448'),
|
||||
('druuzil', 'hugh_jackman_384'),
|
||||
('druuzil', 'idris_elba_320'),
|
||||
('druuzil', 'jack_nicholson_320'),
|
||||
('druuzil', 'james_mcavoy_320'),
|
||||
('druuzil', 'james_varney_320'),
|
||||
('druuzil', 'jason_momoa_320'),
|
||||
('druuzil', 'jason_statham_320'),
|
||||
('druuzil', 'jennifer_connelly_384'),
|
||||
('druuzil', 'jimmy_donaldson_320'),
|
||||
('druuzil', 'jordan_peterson_384'),
|
||||
('druuzil', 'karl_urban_224'),
|
||||
('druuzil', 'kate_beckinsale_384'),
|
||||
('druuzil', 'laurence_fishburne_384'),
|
||||
('druuzil', 'lili_reinhart_320'),
|
||||
('druuzil', 'mads_mikkelsen_384'),
|
||||
('druuzil', 'mary_winstead_320'),
|
||||
('druuzil', 'margaret_qualley_384'),
|
||||
('druuzil', 'melina_juergens_320'),
|
||||
('druuzil', 'michael_fassbender_320'),
|
||||
('druuzil', 'michael_fox_320'),
|
||||
('druuzil', 'millie_bobby_brown_320'),
|
||||
('druuzil', 'morgan_freeman_320'),
|
||||
('druuzil', 'patrick_stewart_320'),
|
||||
('druuzil', 'rebecca_ferguson_320'),
|
||||
('druuzil', 'scarlett_johansson_320'),
|
||||
('druuzil', 'seth_macfarlane_384'),
|
||||
('druuzil', 'thomas_cruise_320'),
|
||||
('druuzil', 'thomas_hanks_384'),
|
||||
('edel', 'emma_roberts_224'),
|
||||
('edel', 'ivanka_trump_224'),
|
||||
('edel', 'lize_dzjabrailova_224'),
|
||||
('edel', 'sidney_sweeney_224'),
|
||||
('edel', 'winona_ryder_224')
|
||||
])
|
||||
if download_scope in [ 'lite', 'full' ]:
|
||||
model_config.extend(
|
||||
[
|
||||
('iperov', 'alexandra_daddario_224'),
|
||||
('iperov', 'alexei_navalny_224'),
|
||||
('iperov', 'amber_heard_224'),
|
||||
('iperov', 'dilraba_dilmurat_224'),
|
||||
('iperov', 'elon_musk_224'),
|
||||
('iperov', 'emilia_clarke_224'),
|
||||
('iperov', 'emma_watson_224'),
|
||||
('iperov', 'erin_moriarty_224'),
|
||||
('iperov', 'jackie_chan_224'),
|
||||
('iperov', 'james_carrey_224'),
|
||||
('iperov', 'jason_statham_320'),
|
||||
('iperov', 'keanu_reeves_320'),
|
||||
('iperov', 'margot_robbie_224'),
|
||||
('iperov', 'natalie_dormer_224'),
|
||||
('iperov', 'nicolas_coppola_224'),
|
||||
('iperov', 'robert_downey_224'),
|
||||
('iperov', 'rowan_atkinson_224'),
|
||||
('iperov', 'ryan_reynolds_224'),
|
||||
('iperov', 'scarlett_johansson_224'),
|
||||
('iperov', 'sylvester_stallone_224'),
|
||||
('iperov', 'thomas_cruise_224'),
|
||||
('iperov', 'thomas_holland_224'),
|
||||
('iperov', 'vin_diesel_224'),
|
||||
('iperov', 'vladimir_putin_224')
|
||||
])
|
||||
if download_scope == 'full':
|
||||
model_config.extend(
|
||||
[
|
||||
('jen', 'angelica_trae_288'),
|
||||
('jen', 'ella_freya_224'),
|
||||
('jen', 'emma_myers_320'),
|
||||
('jen', 'evie_pickerill_224'),
|
||||
('jen', 'kang_hyewon_320'),
|
||||
('jen', 'maddie_mead_224'),
|
||||
('jen', 'nicole_turnbull_288'),
|
||||
('mats', 'alica_schmidt_320'),
|
||||
('mats', 'ashley_alexiss_224'),
|
||||
('mats', 'billie_eilish_224'),
|
||||
('mats', 'brie_larson_224'),
|
||||
('mats', 'cara_delevingne_224'),
|
||||
('mats', 'carolin_kebekus_224'),
|
||||
('mats', 'chelsea_clinton_224'),
|
||||
('mats', 'claire_boucher_224'),
|
||||
('mats', 'corinna_kopf_224'),
|
||||
('mats', 'florence_pugh_224'),
|
||||
('mats', 'hillary_clinton_224'),
|
||||
('mats', 'jenna_fischer_224'),
|
||||
('mats', 'kim_jisoo_320'),
|
||||
('mats', 'mica_suarez_320'),
|
||||
('mats', 'shailene_woodley_224'),
|
||||
('mats', 'shraddha_kapoor_320'),
|
||||
('mats', 'yu_jimin_352'),
|
||||
('rumateus', 'alison_brie_224'),
|
||||
('rumateus', 'amber_heard_224'),
|
||||
('rumateus', 'angelina_jolie_224'),
|
||||
('rumateus', 'aubrey_plaza_224'),
|
||||
('rumateus', 'bridget_regan_224'),
|
||||
('rumateus', 'cobie_smulders_224'),
|
||||
('rumateus', 'deborah_woll_224'),
|
||||
('rumateus', 'dua_lipa_224'),
|
||||
('rumateus', 'emma_stone_224'),
|
||||
('rumateus', 'hailee_steinfeld_224'),
|
||||
('rumateus', 'hilary_duff_224'),
|
||||
('rumateus', 'jessica_alba_224'),
|
||||
('rumateus', 'jessica_biel_224'),
|
||||
('rumateus', 'john_cena_224'),
|
||||
('rumateus', 'kim_kardashian_224'),
|
||||
('rumateus', 'kristen_bell_224'),
|
||||
('rumateus', 'lucy_liu_224'),
|
||||
('rumateus', 'margot_robbie_224'),
|
||||
('rumateus', 'megan_fox_224'),
|
||||
('rumateus', 'meghan_markle_224'),
|
||||
('rumateus', 'millie_bobby_brown_224'),
|
||||
('rumateus', 'natalie_portman_224'),
|
||||
('rumateus', 'nicki_minaj_224'),
|
||||
('rumateus', 'olivia_wilde_224'),
|
||||
('rumateus', 'shay_mitchell_224'),
|
||||
('rumateus', 'sophie_turner_224'),
|
||||
('rumateus', 'taylor_swift_224')
|
||||
])
|
||||
model_set : ModelSet = {}
|
||||
|
||||
for model_scope, model_name in model_config:
|
||||
model_id = '/'.join([ model_scope, model_name ])
|
||||
|
||||
model_set[model_id] =\
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'deep_swapper':
|
||||
{
|
||||
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_scope, model_name + '.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/' + model_scope + '/' + model_name + '.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'deep_swapper':
|
||||
{
|
||||
'url': resolve_download_url_by_provider('huggingface', 'deepfacelive-models-' + model_scope, model_name + '.dfm'),
|
||||
'path': resolve_relative_path('../.assets/models/' + model_scope + '/' + model_name + '.dfm')
|
||||
}
|
||||
},
|
||||
'template': 'dfl_whole_face'
|
||||
}
|
||||
|
||||
custom_model_files = list_directory(resolve_relative_path('../.assets/models/custom'))
|
||||
|
||||
if custom_model_files:
|
||||
|
||||
for model_file in custom_model_files:
|
||||
model_id = '/'.join([ 'custom', model_file.get('name') ])
|
||||
|
||||
model_set[model_id] =\
|
||||
{
|
||||
'sources':
|
||||
{
|
||||
'deep_swapper':
|
||||
{
|
||||
'path': resolve_relative_path(model_file.get('path'))
|
||||
}
|
||||
},
|
||||
'template': 'dfl_whole_face'
|
||||
}
|
||||
|
||||
return model_set
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
deep_swapper_model = state_manager.get_item('deep_swapper_model')
|
||||
return create_static_model_set('full').get(deep_swapper_model)
|
||||
|
||||
|
||||
def get_model_size() -> Size:
|
||||
deep_swapper = get_inference_pool().get('deep_swapper')
|
||||
deep_swapper_outputs = deep_swapper.get_outputs()
|
||||
|
||||
for deep_swapper_output in deep_swapper_outputs:
|
||||
return deep_swapper_output.shape[1:3]
|
||||
return 0, 0
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
group_processors = find_argument_group(program, 'processors')
|
||||
if group_processors:
|
||||
group_processors.add_argument('--deep-swapper-model', help = wording.get('help.deep_swapper_model'), default = config.get_str_value('processors.deep_swapper_model', 'iperov/elon_musk_224'), choices = processors_choices.deep_swapper_models)
|
||||
group_processors.add_argument('--deep-swapper-morph', help = wording.get('help.deep_swapper_morph'), type = int, default = config.get_int_value('processors.deep_swapper_morph', '80'), choices = processors_choices.deep_swapper_morph_range, metavar = create_int_metavar(processors_choices.deep_swapper_morph_range))
|
||||
facefusion.jobs.job_store.register_step_keys([ 'deep_swapper_model', 'deep_swapper_morph' ])
|
||||
|
||||
|
||||
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
apply_state_item('deep_swapper_model', args.get('deep_swapper_model'))
|
||||
apply_state_item('deep_swapper_morph', args.get('deep_swapper_morph'))
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
if model_hashes and model_sources:
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
return True
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
|
||||
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__)
|
||||
return False
|
||||
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
|
||||
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__)
|
||||
return False
|
||||
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
|
||||
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__)
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def post_process() -> None:
|
||||
read_static_image.cache_clear()
|
||||
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
|
||||
clear_inference_pool()
|
||||
if state_manager.get_item('video_memory_strategy') == 'strict':
|
||||
content_analyser.clear_inference_pool()
|
||||
face_classifier.clear_inference_pool()
|
||||
face_detector.clear_inference_pool()
|
||||
face_landmarker.clear_inference_pool()
|
||||
face_masker.clear_inference_pool()
|
||||
face_recognizer.clear_inference_pool()
|
||||
|
||||
|
||||
def swap_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
|
||||
model_template = get_model_options().get('template')
|
||||
model_size = get_model_size()
|
||||
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
|
||||
crop_vision_frame_raw = crop_vision_frame.copy()
|
||||
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding'))
|
||||
crop_masks =\
|
||||
[
|
||||
box_mask
|
||||
]
|
||||
|
||||
if 'occlusion' in state_manager.get_item('face_mask_types'):
|
||||
occlusion_mask = create_occlusion_mask(crop_vision_frame)
|
||||
crop_masks.append(occlusion_mask)
|
||||
|
||||
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
|
||||
deep_swapper_morph = numpy.array([ numpy.interp(state_manager.get_item('deep_swapper_morph'), [ 0, 100 ], [ 0, 1 ]) ]).astype(numpy.float32)
|
||||
crop_vision_frame, crop_source_mask, crop_target_mask = forward(crop_vision_frame, deep_swapper_morph)
|
||||
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
|
||||
crop_vision_frame = conditional_match_frame_color(crop_vision_frame_raw, crop_vision_frame)
|
||||
crop_masks.append(prepare_crop_mask(crop_source_mask, crop_target_mask))
|
||||
|
||||
if 'region' in state_manager.get_item('face_mask_types'):
|
||||
region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions'))
|
||||
crop_masks.append(region_mask)
|
||||
|
||||
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
|
||||
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
|
||||
return paste_vision_frame
|
||||
|
||||
|
||||
def forward(crop_vision_frame : VisionFrame, deep_swapper_morph : DeepSwapperMorph) -> Tuple[VisionFrame, Mask, Mask]:
|
||||
deep_swapper = get_inference_pool().get('deep_swapper')
|
||||
deep_swapper_inputs = {}
|
||||
|
||||
for deep_swapper_input in deep_swapper.get_inputs():
|
||||
if deep_swapper_input.name == 'in_face:0':
|
||||
deep_swapper_inputs[deep_swapper_input.name] = crop_vision_frame
|
||||
if deep_swapper_input.name == 'morph_value:0':
|
||||
deep_swapper_inputs[deep_swapper_input.name] = deep_swapper_morph
|
||||
|
||||
with thread_semaphore():
|
||||
crop_target_mask, crop_vision_frame, crop_source_mask = deep_swapper.run(None, deep_swapper_inputs)
|
||||
|
||||
return crop_vision_frame[0], crop_source_mask[0], crop_target_mask[0]
|
||||
|
||||
|
||||
def has_morph_input() -> bool:
|
||||
deep_swapper = get_inference_pool().get('deep_swapper')
|
||||
|
||||
for deep_swapper_input in deep_swapper.get_inputs():
|
||||
if deep_swapper_input.name == 'morph_value:0':
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
crop_vision_frame = cv2.addWeighted(crop_vision_frame, 1.75, cv2.GaussianBlur(crop_vision_frame, (0, 0), 2), -0.75, 0)
|
||||
crop_vision_frame = crop_vision_frame / 255.0
|
||||
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0).astype(numpy.float32)
|
||||
return crop_vision_frame
|
||||
|
||||
|
||||
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
crop_vision_frame = (crop_vision_frame * 255.0).clip(0, 255)
|
||||
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)
|
||||
return crop_vision_frame
|
||||
|
||||
|
||||
def prepare_crop_mask(crop_source_mask : Mask, crop_target_mask : Mask) -> Mask:
|
||||
model_size = get_model_size()
|
||||
blur_size = 6.25
|
||||
kernel_size = 3
|
||||
crop_mask = numpy.minimum.reduce([ crop_source_mask, crop_target_mask ])
|
||||
crop_mask = crop_mask.reshape(model_size).clip(0, 1)
|
||||
crop_mask = cv2.erode(crop_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)), iterations = 2)
|
||||
crop_mask = cv2.GaussianBlur(crop_mask, (0, 0), blur_size)
|
||||
return crop_mask
|
||||
|
||||
|
||||
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
|
||||
return swap_face(target_face, temp_vision_frame)
|
||||
|
||||
|
||||
def process_frame(inputs : DeepSwapperInputs) -> VisionFrame:
|
||||
reference_faces = inputs.get('reference_faces')
|
||||
target_vision_frame = inputs.get('target_vision_frame')
|
||||
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
|
||||
|
||||
if state_manager.get_item('face_selector_mode') == 'many':
|
||||
if many_faces:
|
||||
for target_face in many_faces:
|
||||
target_vision_frame = swap_face(target_face, target_vision_frame)
|
||||
if state_manager.get_item('face_selector_mode') == 'one':
|
||||
target_face = get_one_face(many_faces)
|
||||
if target_face:
|
||||
target_vision_frame = swap_face(target_face, target_vision_frame)
|
||||
if state_manager.get_item('face_selector_mode') == 'reference':
|
||||
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
|
||||
if similar_faces:
|
||||
for similar_face in similar_faces:
|
||||
target_vision_frame = swap_face(similar_face, target_vision_frame)
|
||||
return target_vision_frame
|
||||
|
||||
|
||||
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
|
||||
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
||||
|
||||
for queue_payload in process_manager.manage(queue_payloads):
|
||||
target_vision_path = queue_payload['frame_path']
|
||||
target_vision_frame = read_image(target_vision_path)
|
||||
output_vision_frame = process_frame(
|
||||
{
|
||||
'reference_faces': reference_faces,
|
||||
'target_vision_frame': target_vision_frame
|
||||
})
|
||||
write_image(target_vision_path, output_vision_frame)
|
||||
update_progress(1)
|
||||
|
||||
|
||||
def process_image(source_path : str, target_path : str, output_path : str) -> None:
|
||||
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
||||
target_vision_frame = read_static_image(target_path)
|
||||
output_vision_frame = process_frame(
|
||||
{
|
||||
'reference_faces': reference_faces,
|
||||
'target_vision_frame': target_vision_frame
|
||||
})
|
||||
write_image(output_path, output_vision_frame)
|
||||
|
||||
|
||||
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
|
||||
processors.multi_process_frames(None, temp_frame_paths, process_frames)
|
@ -1,4 +1,5 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
@ -9,7 +10,7 @@ import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import create_int_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_analyser import get_many_faces, get_one_face
|
||||
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
|
||||
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
|
||||
@ -22,28 +23,31 @@ from facefusion.processors.typing import ExpressionRestorerInputs
|
||||
from facefusion.processors.typing import LivePortraitExpression, LivePortraitFeatureVolume, LivePortraitMotionPoints, LivePortraitPitch, LivePortraitRoll, LivePortraitScale, LivePortraitTranslation, LivePortraitYaw
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import conditional_thread_semaphore, thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import get_video_frame, read_image, read_static_image, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'live_portrait':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'feature_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.hash')
|
||||
},
|
||||
'motion_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.hash')
|
||||
},
|
||||
'generator':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_generator.hash')
|
||||
}
|
||||
},
|
||||
@ -51,30 +55,29 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'feature_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.onnx')
|
||||
},
|
||||
'motion_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.onnx')
|
||||
},
|
||||
'generator':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_generator.onnx')
|
||||
}
|
||||
},
|
||||
'template': 'arcface_128_v2',
|
||||
'size': (512, 512)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('expression_restorer_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
@ -83,7 +86,7 @@ def clear_inference_pool() -> None:
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
expression_restorer_model = state_manager.get_item('expression_restorer_model')
|
||||
return MODEL_SET.get(expression_restorer_model)
|
||||
return create_static_model_set('full').get(expression_restorer_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
@ -100,14 +103,16 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
if mode == 'stream':
|
||||
logger.error(wording.get('stream_not_supported') + wording.get('exclamation_mark'), __name__)
|
||||
return False
|
||||
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
|
||||
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__)
|
||||
return False
|
||||
@ -222,7 +227,7 @@ def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
|
||||
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0).clip(0, 1)
|
||||
crop_vision_frame = (crop_vision_frame * 255.0)
|
||||
crop_vision_frame = crop_vision_frame * 255.0
|
||||
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1]
|
||||
return crop_vision_frame
|
||||
|
||||
|
@ -17,11 +17,11 @@ from facefusion.filesystem import in_directory, same_file_extension
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.typing import FaceDebuggerInputs
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
|
||||
|
||||
def get_inference_pool() -> None:
|
||||
def get_inference_pool() -> InferencePool:
|
||||
pass
|
||||
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
@ -9,7 +10,7 @@ import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import create_float_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_analyser import get_many_faces, get_one_face
|
||||
from facefusion.face_helper import paste_back, scale_face_landmark_5, warp_face_by_face_landmark_5
|
||||
from facefusion.face_masker import create_static_box_mask
|
||||
@ -21,43 +22,46 @@ from facefusion.processors.live_portrait import create_rotation, limit_euler_ang
|
||||
from facefusion.processors.typing import FaceEditorInputs, LivePortraitExpression, LivePortraitFeatureVolume, LivePortraitMotionPoints, LivePortraitPitch, LivePortraitRoll, LivePortraitRotation, LivePortraitScale, LivePortraitTranslation, LivePortraitYaw
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import conditional_thread_semaphore, thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, FaceLandmark68, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Face, FaceLandmark68, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'live_portrait':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'feature_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.hash')
|
||||
},
|
||||
'motion_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.hash')
|
||||
},
|
||||
'eye_retargeter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_eye_retargeter.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_eye_retargeter.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_eye_retargeter.hash')
|
||||
},
|
||||
'lip_retargeter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_lip_retargeter.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_lip_retargeter.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_lip_retargeter.hash')
|
||||
},
|
||||
'stitcher':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_stitcher.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_stitcher.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_stitcher.hash')
|
||||
},
|
||||
'generator':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_generator.hash')
|
||||
}
|
||||
},
|
||||
@ -65,55 +69,53 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'feature_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.onnx')
|
||||
},
|
||||
'motion_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.onnx')
|
||||
},
|
||||
'eye_retargeter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_eye_retargeter.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_eye_retargeter.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_eye_retargeter.onnx')
|
||||
},
|
||||
'lip_retargeter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_lip_retargeter.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_lip_retargeter.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_lip_retargeter.onnx')
|
||||
},
|
||||
'stitcher':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_stitcher.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_stitcher.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_stitcher.onnx')
|
||||
},
|
||||
'generator':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/live_portrait_generator.onnx')
|
||||
}
|
||||
},
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_editor_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_editor_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
face_editor_model = state_manager.get_item('face_editor_model')
|
||||
return MODEL_SET.get(face_editor_model)
|
||||
return create_static_model_set('full').get(face_editor_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
@ -156,11 +158,10 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
|
@ -1,4 +1,5 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
@ -8,8 +9,8 @@ import facefusion.jobs.job_manager
|
||||
import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import create_int_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.common_helper import create_float_metavar, create_int_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_analyser import get_many_faces, get_one_face
|
||||
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
|
||||
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
|
||||
@ -17,21 +18,24 @@ from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
|
||||
from facefusion.face_store import get_reference_faces
|
||||
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.typing import FaceEnhancerInputs
|
||||
from facefusion.processors.typing import FaceEnhancerInputs, FaceEnhancerWeight
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import read_image, read_static_image, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'codeformer':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/codeformer.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'codeformer.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/codeformer.hash')
|
||||
}
|
||||
},
|
||||
@ -39,7 +43,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/codeformer.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'codeformer.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/codeformer.onnx')
|
||||
}
|
||||
},
|
||||
@ -52,7 +56,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.2.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.2.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.hash')
|
||||
}
|
||||
},
|
||||
@ -60,7 +64,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.2.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.2.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx')
|
||||
}
|
||||
},
|
||||
@ -73,7 +77,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.3.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.3.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.hash')
|
||||
}
|
||||
},
|
||||
@ -81,7 +85,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.3.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.3.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx')
|
||||
}
|
||||
},
|
||||
@ -94,7 +98,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.hash')
|
||||
}
|
||||
},
|
||||
@ -102,7 +106,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gfpgan_1.4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx')
|
||||
}
|
||||
},
|
||||
@ -115,7 +119,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_256.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.hash')
|
||||
}
|
||||
},
|
||||
@ -123,7 +127,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_256.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx')
|
||||
}
|
||||
},
|
||||
@ -136,7 +140,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_512.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_512.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.hash')
|
||||
}
|
||||
},
|
||||
@ -144,7 +148,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_512.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_512.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx')
|
||||
}
|
||||
},
|
||||
@ -157,7 +161,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_1024.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_1024.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.hash')
|
||||
}
|
||||
},
|
||||
@ -165,7 +169,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_1024.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_1024.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx')
|
||||
}
|
||||
},
|
||||
@ -178,7 +182,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_2048.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_2048.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.hash')
|
||||
}
|
||||
},
|
||||
@ -186,7 +190,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/gpen_bfr_2048.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_2048.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx')
|
||||
}
|
||||
},
|
||||
@ -199,7 +203,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/restoreformer_plus_plus.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'restoreformer_plus_plus.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.hash')
|
||||
}
|
||||
},
|
||||
@ -207,30 +211,28 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/restoreformer_plus_plus.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'restoreformer_plus_plus.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx')
|
||||
}
|
||||
},
|
||||
'template': 'ffhq_512',
|
||||
'size': (512, 512)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_enhancer_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_enhancer_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
face_enhancer_model = state_manager.get_item('face_enhancer_model')
|
||||
return MODEL_SET.get(face_enhancer_model)
|
||||
return create_static_model_set('full').get(face_enhancer_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
@ -238,20 +240,21 @@ def register_args(program : ArgumentParser) -> None:
|
||||
if group_processors:
|
||||
group_processors.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('processors.face_enhancer_model', 'gfpgan_1.4'), choices = processors_choices.face_enhancer_models)
|
||||
group_processors.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('processors.face_enhancer_blend', '80'), choices = processors_choices.face_enhancer_blend_range, metavar = create_int_metavar(processors_choices.face_enhancer_blend_range))
|
||||
facefusion.jobs.job_store.register_step_keys([ 'face_enhancer_model', 'face_enhancer_blend' ])
|
||||
group_processors.add_argument('--face-enhancer-weight', help = wording.get('help.face_enhancer_weight'), type = float, default = config.get_float_value('processors.face_enhancer_weight', '1.0'), choices = processors_choices.face_enhancer_weight_range, metavar = create_float_metavar(processors_choices.face_enhancer_weight_range))
|
||||
facefusion.jobs.job_store.register_step_keys([ 'face_enhancer_model', 'face_enhancer_blend', 'face_enhancer_weight' ])
|
||||
|
||||
|
||||
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
apply_state_item('face_enhancer_model', args.get('face_enhancer_model'))
|
||||
apply_state_item('face_enhancer_blend', args.get('face_enhancer_blend'))
|
||||
apply_state_item('face_enhancer_weight', args.get('face_enhancer_weight'))
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
@ -295,7 +298,8 @@ def enhance_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionF
|
||||
crop_masks.append(occlusion_mask)
|
||||
|
||||
crop_vision_frame = prepare_crop_frame(crop_vision_frame)
|
||||
crop_vision_frame = forward(crop_vision_frame)
|
||||
face_enhancer_weight = numpy.array([ state_manager.get_item('face_enhancer_weight') ]).astype(numpy.double)
|
||||
crop_vision_frame = forward(crop_vision_frame, face_enhancer_weight)
|
||||
crop_vision_frame = normalize_crop_frame(crop_vision_frame)
|
||||
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
|
||||
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix)
|
||||
@ -303,7 +307,7 @@ def enhance_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionF
|
||||
return temp_vision_frame
|
||||
|
||||
|
||||
def forward(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
def forward(crop_vision_frame : VisionFrame, face_enhancer_weight : FaceEnhancerWeight) -> VisionFrame:
|
||||
face_enhancer = get_inference_pool().get('face_enhancer')
|
||||
face_enhancer_inputs = {}
|
||||
|
||||
@ -311,8 +315,7 @@ def forward(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
if face_enhancer_input.name == 'input':
|
||||
face_enhancer_inputs[face_enhancer_input.name] = crop_vision_frame
|
||||
if face_enhancer_input.name == 'weight':
|
||||
weight = numpy.array([ 1 ]).astype(numpy.double)
|
||||
face_enhancer_inputs[face_enhancer_input.name] = weight
|
||||
face_enhancer_inputs[face_enhancer_input.name] = face_enhancer_weight
|
||||
|
||||
with thread_semaphore():
|
||||
crop_vision_frame = face_enhancer.run(None, face_enhancer_inputs)[0][0]
|
||||
@ -320,6 +323,15 @@ def forward(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
return crop_vision_frame
|
||||
|
||||
|
||||
def has_weight_input() -> bool:
|
||||
face_enhancer = get_inference_pool().get('face_enhancer')
|
||||
|
||||
for deep_swapper_input in face_enhancer.get_inputs():
|
||||
if deep_swapper_input.name == 'weight':
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
|
||||
crop_vision_frame = (crop_vision_frame - 0.5) / 0.5
|
||||
|
@ -1,39 +1,44 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List, Tuple
|
||||
|
||||
import numpy
|
||||
|
||||
import facefusion.choices
|
||||
import facefusion.jobs.job_manager
|
||||
import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import get_first
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.execution import has_execution_provider
|
||||
from facefusion.face_analyser import get_average_face, get_many_faces, get_one_face
|
||||
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
|
||||
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask
|
||||
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
|
||||
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces, sort_faces_by_order
|
||||
from facefusion.face_store import get_reference_faces
|
||||
from facefusion.filesystem import filter_image_paths, has_image, in_directory, is_image, is_video, resolve_relative_path, same_file_extension
|
||||
from facefusion.inference_manager import get_static_model_initializer
|
||||
from facefusion.model_helper import get_static_model_initializer
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.pixel_boost import explode_pixel_boost, implode_pixel_boost
|
||||
from facefusion.processors.typing import FaceSwapperInputs
|
||||
from facefusion.program_helper import find_argument_group, suggest_face_swapper_pixel_boost_choices
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, Embedding, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Embedding, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import read_image, read_static_image, read_static_images, unpack_resolution, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'blendswap_256':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/blendswap_256.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'blendswap_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/blendswap_256.hash')
|
||||
}
|
||||
},
|
||||
@ -41,7 +46,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/blendswap_256.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'blendswap_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/blendswap_256.onnx')
|
||||
}
|
||||
},
|
||||
@ -57,12 +62,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_1_256.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'ghost_1_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/ghost_1_256.hash')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_ghost.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.hash')
|
||||
}
|
||||
},
|
||||
@ -70,12 +75,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_1_256.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'ghost_1_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/ghost_1_256.onnx')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_ghost.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.onnx')
|
||||
}
|
||||
},
|
||||
@ -91,12 +96,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_2_256.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'ghost_2_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/ghost_2_256.hash')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_ghost.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.hash')
|
||||
}
|
||||
},
|
||||
@ -104,12 +109,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_2_256.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'ghost_2_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/ghost_2_256.onnx')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_ghost.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.onnx')
|
||||
}
|
||||
},
|
||||
@ -125,12 +130,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_3_256.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'ghost_3_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/ghost_3_256.hash')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_ghost.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.hash')
|
||||
}
|
||||
},
|
||||
@ -138,12 +143,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ghost_3_256.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'ghost_3_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/ghost_3_256.onnx')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_ghost.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.onnx')
|
||||
}
|
||||
},
|
||||
@ -153,13 +158,47 @@ MODEL_SET : ModelSet =\
|
||||
'mean': [ 0.5, 0.5, 0.5 ],
|
||||
'standard_deviation': [ 0.5, 0.5, 0.5 ]
|
||||
},
|
||||
'hififace_unofficial_256':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'hififace_unofficial_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/hififace_unofficial_256.hash')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'arcface_converter_hififace.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_hififace.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'hififace_unofficial_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/hififace_unofficial_256.onnx')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'arcface_converter_hififace.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_hififace.onnx')
|
||||
}
|
||||
},
|
||||
'type': 'hififace',
|
||||
'template': 'mtcnn_512',
|
||||
'size': (256, 256),
|
||||
'mean': [ 0.5, 0.5, 0.5 ],
|
||||
'standard_deviation': [ 0.5, 0.5, 0.5 ]
|
||||
},
|
||||
'inswapper_128':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'inswapper_128.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/inswapper_128.hash')
|
||||
}
|
||||
},
|
||||
@ -167,7 +206,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'inswapper_128.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/inswapper_128.onnx')
|
||||
}
|
||||
},
|
||||
@ -183,7 +222,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128_fp16.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'inswapper_128_fp16.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.hash')
|
||||
}
|
||||
},
|
||||
@ -191,7 +230,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/inswapper_128_fp16.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'inswapper_128_fp16.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx')
|
||||
}
|
||||
},
|
||||
@ -207,12 +246,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_256.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'simswap_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/simswap_256.hash')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_simswap.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.hash')
|
||||
}
|
||||
},
|
||||
@ -220,12 +259,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_256.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'simswap_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/simswap_256.onnx')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_simswap.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.onnx')
|
||||
}
|
||||
},
|
||||
@ -241,12 +280,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_unofficial_512.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'simswap_unofficial_512.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/simswap_unofficial_512.hash')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_simswap.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.hash')
|
||||
}
|
||||
},
|
||||
@ -254,12 +293,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/simswap_unofficial_512.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'simswap_unofficial_512.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/simswap_unofficial_512.onnx')
|
||||
},
|
||||
'embedding_converter':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/arcface_converter_simswap.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.onnx')
|
||||
}
|
||||
},
|
||||
@ -275,7 +314,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/uniface_256.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'uniface_256.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/uniface_256.hash')
|
||||
}
|
||||
},
|
||||
@ -283,7 +322,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'face_swapper':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/uniface_256.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'uniface_256.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/uniface_256.onnx')
|
||||
}
|
||||
},
|
||||
@ -293,31 +332,29 @@ MODEL_SET : ModelSet =\
|
||||
'mean': [ 0.5, 0.5, 0.5 ],
|
||||
'standard_deviation': [ 0.5, 0.5, 0.5 ]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_swapper_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('face_swapper_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
face_swapper_model = state_manager.get_item('face_swapper_model')
|
||||
face_swapper_model = 'inswapper_128' if has_execution_provider('coreml') and face_swapper_model == 'inswapper_128_fp16' else face_swapper_model
|
||||
return MODEL_SET.get(face_swapper_model)
|
||||
return create_static_model_set('full').get(face_swapper_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
group_processors = find_argument_group(program, 'processors')
|
||||
if group_processors:
|
||||
group_processors.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('processors.face_swapper_model', 'inswapper_128_fp16'), choices = processors_choices.face_swapper_set.keys())
|
||||
face_swapper_pixel_boost_choices = suggest_face_swapper_pixel_boost_choices(program)
|
||||
group_processors.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('processors.face_swapper_model', 'inswapper_128_fp16'), choices = processors_choices.face_swapper_models)
|
||||
known_args, _ = program.parse_known_args()
|
||||
face_swapper_pixel_boost_choices = processors_choices.face_swapper_set.get(known_args.face_swapper_model)
|
||||
group_processors.add_argument('--face-swapper-pixel-boost', help = wording.get('help.face_swapper_pixel_boost'), default = config.get_str_value('processors.face_swapper_pixel_boost', get_first(face_swapper_pixel_boost_choices)), choices = face_swapper_pixel_boost_choices)
|
||||
facefusion.jobs.job_store.register_step_keys([ 'face_swapper_model', 'face_swapper_pixel_boost' ])
|
||||
|
||||
@ -328,11 +365,10 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
@ -410,9 +446,12 @@ def forward_swap_face(source_face : Face, crop_vision_frame : VisionFrame) -> Vi
|
||||
model_type = get_model_options().get('type')
|
||||
face_swapper_inputs = {}
|
||||
|
||||
if has_execution_provider('coreml') and model_type in [ 'ghost', 'uniface' ]:
|
||||
face_swapper.set_providers([ facefusion.choices.execution_provider_set.get('cpu') ])
|
||||
|
||||
for face_swapper_input in face_swapper.get_inputs():
|
||||
if face_swapper_input.name == 'source':
|
||||
if model_type == 'blendswap' or model_type == 'uniface':
|
||||
if model_type in [ 'blendswap', 'uniface' ]:
|
||||
face_swapper_inputs[face_swapper_input.name] = prepare_source_frame(source_face)
|
||||
else:
|
||||
face_swapper_inputs[face_swapper_input.name] = prepare_source_embedding(source_face)
|
||||
@ -493,7 +532,7 @@ def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
|
||||
model_standard_deviation = get_model_options().get('standard_deviation')
|
||||
|
||||
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0)
|
||||
if model_type == 'ghost' or model_type == 'uniface':
|
||||
if model_type in [ 'ghost', 'hififace', 'uniface' ]:
|
||||
crop_vision_frame = crop_vision_frame * model_standard_deviation + model_mean
|
||||
crop_vision_frame = crop_vision_frame.clip(0, 1)
|
||||
crop_vision_frame = crop_vision_frame[:, :, ::-1] * 255
|
||||
@ -529,7 +568,13 @@ def process_frame(inputs : FaceSwapperInputs) -> VisionFrame:
|
||||
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
|
||||
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
||||
source_frames = read_static_images(source_paths)
|
||||
source_faces = get_many_faces(source_frames)
|
||||
source_faces = []
|
||||
|
||||
for source_frame in source_frames:
|
||||
temp_faces = get_many_faces([ source_frame ])
|
||||
temp_faces = sort_faces_by_order(temp_faces, 'large-small')
|
||||
if temp_faces:
|
||||
source_faces.append(get_first(temp_faces))
|
||||
source_face = get_average_face(source_faces)
|
||||
|
||||
for queue_payload in process_manager.manage(queue_payloads):
|
||||
@ -548,7 +593,13 @@ def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload]
|
||||
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None:
|
||||
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
||||
source_frames = read_static_images(source_paths)
|
||||
source_faces = get_many_faces(source_frames)
|
||||
source_faces = []
|
||||
|
||||
for source_frame in source_frames:
|
||||
temp_faces = get_many_faces([ source_frame ])
|
||||
temp_faces = sort_faces_by_order(temp_faces, 'large-small')
|
||||
if temp_faces:
|
||||
source_faces.append(get_first(temp_faces))
|
||||
source_face = get_average_face(source_faces)
|
||||
target_vision_frame = read_static_image(target_path)
|
||||
output_vision_frame = process_frame(
|
||||
|
@ -1,4 +1,5 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
@ -9,24 +10,27 @@ import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import create_int_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.typing import FrameColorizerInputs
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import read_image, read_static_image, unpack_resolution, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'ddcolor':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ddcolor.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'ddcolor.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/ddcolor.hash')
|
||||
}
|
||||
},
|
||||
@ -34,7 +38,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ddcolor.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'ddcolor.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/ddcolor.onnx')
|
||||
}
|
||||
},
|
||||
@ -46,7 +50,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ddcolor_artistic.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'ddcolor_artistic.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/ddcolor_artistic.hash')
|
||||
}
|
||||
},
|
||||
@ -54,7 +58,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ddcolor_artistic.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'ddcolor_artistic.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/ddcolor_artistic.onnx')
|
||||
}
|
||||
},
|
||||
@ -66,7 +70,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/deoldify.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'deoldify.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/deoldify.hash')
|
||||
}
|
||||
},
|
||||
@ -74,7 +78,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/deoldify.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'deoldify.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/deoldify.onnx')
|
||||
}
|
||||
},
|
||||
@ -86,7 +90,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/deoldify_artistic.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'deoldify_artistic.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/deoldify_artistic.hash')
|
||||
}
|
||||
},
|
||||
@ -94,7 +98,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/deoldify_artistic.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'deoldify_artistic.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/deoldify_artistic.onnx')
|
||||
}
|
||||
},
|
||||
@ -106,7 +110,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/deoldify_stable.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'deoldify_stable.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/deoldify_stable.hash')
|
||||
}
|
||||
},
|
||||
@ -114,29 +118,27 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_colorizer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/deoldify_stable.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'deoldify_stable.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/deoldify_stable.onnx')
|
||||
}
|
||||
},
|
||||
'type': 'deoldify'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('frame_colorizer_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('frame_colorizer_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
frame_colorizer_model = state_manager.get_item('frame_colorizer_model')
|
||||
return MODEL_SET.get(frame_colorizer_model)
|
||||
return create_static_model_set('full').get(frame_colorizer_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
@ -155,11 +157,10 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
|
@ -1,4 +1,5 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
@ -9,24 +10,27 @@ import facefusion.jobs.job_store
|
||||
import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, inference_manager, logger, process_manager, state_manager, wording
|
||||
from facefusion.common_helper import create_int_metavar
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.typing import FrameEnhancerInputs
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import create_tile_frames, merge_tile_frames, read_image, read_static_image, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'clear_reality_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/clear_reality_x4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'clear_reality_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/clear_reality_x4.hash')
|
||||
}
|
||||
},
|
||||
@ -34,7 +38,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/clear_reality_x4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'clear_reality_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/clear_reality_x4.onnx')
|
||||
}
|
||||
},
|
||||
@ -47,7 +51,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/lsdir_x4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'lsdir_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/lsdir_x4.hash')
|
||||
}
|
||||
},
|
||||
@ -55,7 +59,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/lsdir_x4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'lsdir_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/lsdir_x4.onnx')
|
||||
}
|
||||
},
|
||||
@ -68,7 +72,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/nomos8k_sc_x4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'nomos8k_sc_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.hash')
|
||||
}
|
||||
},
|
||||
@ -76,7 +80,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/nomos8k_sc_x4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'nomos8k_sc_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.onnx')
|
||||
}
|
||||
},
|
||||
@ -89,7 +93,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.hash')
|
||||
}
|
||||
},
|
||||
@ -97,7 +101,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.onnx')
|
||||
}
|
||||
},
|
||||
@ -110,7 +114,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2_fp16.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2_fp16.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.hash')
|
||||
}
|
||||
},
|
||||
@ -118,7 +122,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x2_fp16.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2_fp16.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.onnx')
|
||||
}
|
||||
},
|
||||
@ -131,7 +135,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.hash')
|
||||
}
|
||||
},
|
||||
@ -139,7 +143,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.onnx')
|
||||
}
|
||||
},
|
||||
@ -152,7 +156,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4_fp16.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4_fp16.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.hash')
|
||||
}
|
||||
},
|
||||
@ -160,7 +164,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x4_fp16.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4_fp16.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.onnx')
|
||||
}
|
||||
},
|
||||
@ -173,7 +177,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.hash')
|
||||
}
|
||||
},
|
||||
@ -181,7 +185,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.onnx')
|
||||
}
|
||||
},
|
||||
@ -194,7 +198,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8_fp16.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8_fp16.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.hash')
|
||||
}
|
||||
},
|
||||
@ -202,7 +206,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_esrgan_x8_fp16.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8_fp16.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.onnx')
|
||||
}
|
||||
},
|
||||
@ -215,7 +219,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_hatgan_x4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_hatgan_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.hash')
|
||||
}
|
||||
},
|
||||
@ -223,20 +227,104 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/real_hatgan_x4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'real_hatgan_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (256, 16, 8),
|
||||
'scale': 4
|
||||
},
|
||||
'real_web_photo_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'real_web_photo_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/real_web_photo_x4.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'real_web_photo_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/real_web_photo_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (64, 4, 2),
|
||||
'scale': 4
|
||||
},
|
||||
'realistic_rescaler_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'realistic_rescaler_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/realistic_rescaler_x4.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'realistic_rescaler_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/realistic_rescaler_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (128, 8, 4),
|
||||
'scale': 4
|
||||
},
|
||||
'remacri_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'remacri_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/remacri_x4.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'remacri_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/remacri_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (128, 8, 4),
|
||||
'scale': 4
|
||||
},
|
||||
'siax_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'siax_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/siax_x4.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'siax_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/siax_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (128, 8, 4),
|
||||
'scale': 4
|
||||
},
|
||||
'span_kendata_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/span_kendata_x4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'span_kendata_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/span_kendata_x4.hash')
|
||||
}
|
||||
},
|
||||
@ -244,20 +332,41 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/span_kendata_x4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'span_kendata_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/span_kendata_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (128, 8, 4),
|
||||
'scale': 4
|
||||
},
|
||||
'swin2_sr_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'swin2_sr_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/swin2_sr_x4.hash')
|
||||
}
|
||||
},
|
||||
'sources':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': resolve_download_url('models-3.1.0', 'swin2_sr_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/swin2_sr_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (128, 8, 4),
|
||||
'scale': 4
|
||||
},
|
||||
'ultra_sharp_x4':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ultra_sharp_x4.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'ultra_sharp_x4.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.hash')
|
||||
}
|
||||
},
|
||||
@ -265,30 +374,28 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'frame_enhancer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/ultra_sharp_x4.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'ultra_sharp_x4.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.onnx')
|
||||
}
|
||||
},
|
||||
'size': (128, 8, 4),
|
||||
'scale': 4
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('frame_enhancer_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('frame_enhancer_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
frame_enhancer_model = state_manager.get_item('frame_enhancer_model')
|
||||
return MODEL_SET.get(frame_enhancer_model)
|
||||
return create_static_model_set('full').get(frame_enhancer_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
@ -305,11 +412,10 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
|
@ -1,4 +1,5 @@
|
||||
from argparse import ArgumentParser
|
||||
from functools import lru_cache
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
@ -10,7 +11,7 @@ import facefusion.processors.core as processors
|
||||
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, voice_extractor, wording
|
||||
from facefusion.audio import create_empty_audio_frame, get_voice_frame, read_static_voice
|
||||
from facefusion.common_helper import get_first
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.face_analyser import get_many_faces, get_one_face
|
||||
from facefusion.face_helper import create_bounding_box, paste_back, warp_face_by_bounding_box, warp_face_by_face_landmark_5
|
||||
from facefusion.face_masker import create_mouth_mask, create_occlusion_mask, create_static_box_mask
|
||||
@ -21,18 +22,21 @@ from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.typing import LipSyncerInputs
|
||||
from facefusion.program_helper import find_argument_group
|
||||
from facefusion.thread_helper import conditional_thread_semaphore
|
||||
from facefusion.typing import ApplyStateItem, Args, AudioFrame, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.typing import ApplyStateItem, Args, AudioFrame, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
|
||||
from facefusion.vision import read_image, read_static_image, restrict_video_fps, write_image
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'wav2lip_96':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'lip_syncer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/wav2lip_96.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'wav2lip_96.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/wav2lip_96.hash')
|
||||
}
|
||||
},
|
||||
@ -40,7 +44,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'lip_syncer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/wav2lip_96.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'wav2lip_96.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/wav2lip_96.onnx')
|
||||
}
|
||||
},
|
||||
@ -52,7 +56,7 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'lip_syncer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/wav2lip_gan_96.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'wav2lip_gan_96.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/wav2lip_gan_96.hash')
|
||||
}
|
||||
},
|
||||
@ -60,29 +64,27 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'lip_syncer':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/wav2lip_gan_96.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'wav2lip_gan_96.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/wav2lip_gan_96.onnx')
|
||||
}
|
||||
},
|
||||
'size': (96, 96)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
model_sources = get_model_options().get('sources')
|
||||
model_context = __name__ + '.' + state_manager.get_item('lip_syncer_model')
|
||||
return inference_manager.get_inference_pool(model_context, model_sources)
|
||||
return inference_manager.get_inference_pool(__name__, model_sources)
|
||||
|
||||
|
||||
def clear_inference_pool() -> None:
|
||||
model_context = __name__ + '.' + state_manager.get_item('lip_syncer_model')
|
||||
inference_manager.clear_inference_pool(model_context)
|
||||
inference_manager.clear_inference_pool(__name__)
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
lip_syncer_model = state_manager.get_item('lip_syncer_model')
|
||||
return MODEL_SET.get(lip_syncer_model)
|
||||
return create_static_model_set('full').get(lip_syncer_model)
|
||||
|
||||
|
||||
def register_args(program : ArgumentParser) -> None:
|
||||
@ -97,11 +99,10 @@ def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None:
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def pre_process(mode : ProcessMode) -> bool:
|
||||
|
@ -5,13 +5,14 @@ from numpy._typing import NDArray
|
||||
from facefusion.typing import AppContext, AudioFrame, Face, FaceSet, VisionFrame
|
||||
|
||||
AgeModifierModel = Literal['styleganex_age']
|
||||
DeepSwapperModel = str
|
||||
ExpressionRestorerModel = Literal['live_portrait']
|
||||
FaceDebuggerItem = Literal['bounding-box', 'face-landmark-5', 'face-landmark-5/68', 'face-landmark-68', 'face-landmark-68/5', 'face-mask', 'face-detector-score', 'face-landmarker-score', 'age', 'gender', 'race']
|
||||
FaceEditorModel = Literal['live_portrait']
|
||||
FaceEnhancerModel = Literal['codeformer', 'gfpgan_1.2', 'gfpgan_1.3', 'gfpgan_1.4', 'gpen_bfr_256', 'gpen_bfr_512', 'gpen_bfr_1024', 'gpen_bfr_2048', 'restoreformer_plus_plus']
|
||||
FaceSwapperModel = Literal['blendswap_256', 'ghost_1_256', 'ghost_2_256', 'ghost_3_256', 'inswapper_128', 'inswapper_128_fp16', 'simswap_256', 'simswap_unofficial_512', 'uniface_256']
|
||||
FaceSwapperModel = Literal['blendswap_256', 'ghost_1_256', 'ghost_2_256', 'ghost_3_256', 'hififace_unofficial_256', 'inswapper_128', 'inswapper_128_fp16', 'simswap_256', 'simswap_unofficial_512', 'uniface_256']
|
||||
FrameColorizerModel = Literal['ddcolor', 'ddcolor_artistic', 'deoldify', 'deoldify_artistic', 'deoldify_stable']
|
||||
FrameEnhancerModel = Literal['clear_reality_x4', 'lsdir_x4', 'nomos8k_sc_x4', 'real_esrgan_x2', 'real_esrgan_x2_fp16', 'real_esrgan_x4', 'real_esrgan_x4_fp16', 'real_hatgan_x4', 'real_esrgan_x8', 'real_esrgan_x8_fp16', 'span_kendata_x4', 'ultra_sharp_x4']
|
||||
FrameEnhancerModel = Literal['clear_reality_x4', 'lsdir_x4', 'nomos8k_sc_x4', 'real_esrgan_x2', 'real_esrgan_x2_fp16', 'real_esrgan_x4', 'real_esrgan_x4_fp16', 'real_esrgan_x8', 'real_esrgan_x8_fp16', 'real_hatgan_x4', 'real_web_photo_x4', 'realistic_rescaler_x4', 'remacri_x4', 'siax_x4', 'span_kendata_x4', 'swin2_sr_x4', 'ultra_sharp_x4']
|
||||
LipSyncerModel = Literal['wav2lip_96', 'wav2lip_gan_96']
|
||||
|
||||
FaceSwapperSet = Dict[FaceSwapperModel, List[str]]
|
||||
@ -21,6 +22,11 @@ AgeModifierInputs = TypedDict('AgeModifierInputs',
|
||||
'reference_faces' : FaceSet,
|
||||
'target_vision_frame' : VisionFrame
|
||||
})
|
||||
DeepSwapperInputs = TypedDict('DeepSwapperInputs',
|
||||
{
|
||||
'reference_faces' : FaceSet,
|
||||
'target_vision_frame' : VisionFrame
|
||||
})
|
||||
ExpressionRestorerInputs = TypedDict('ExpressionRestorerInputs',
|
||||
{
|
||||
'reference_faces' : FaceSet,
|
||||
@ -67,6 +73,8 @@ ProcessorStateKey = Literal\
|
||||
[
|
||||
'age_modifier_model',
|
||||
'age_modifier_direction',
|
||||
'deep_swapper_model',
|
||||
'deep_swapper_morph',
|
||||
'expression_restorer_model',
|
||||
'expression_restorer_factor',
|
||||
'face_debugger_items',
|
||||
@ -87,6 +95,7 @@ ProcessorStateKey = Literal\
|
||||
'face_editor_head_roll',
|
||||
'face_enhancer_model',
|
||||
'face_enhancer_blend',
|
||||
'face_enhancer_weight',
|
||||
'face_swapper_model',
|
||||
'face_swapper_pixel_boost',
|
||||
'frame_colorizer_model',
|
||||
@ -100,6 +109,8 @@ ProcessorState = TypedDict('ProcessorState',
|
||||
{
|
||||
'age_modifier_model' : AgeModifierModel,
|
||||
'age_modifier_direction' : int,
|
||||
'deep_swapper_model' : DeepSwapperModel,
|
||||
'deep_swapper_morph' : int,
|
||||
'expression_restorer_model' : ExpressionRestorerModel,
|
||||
'expression_restorer_factor' : int,
|
||||
'face_debugger_items' : List[FaceDebuggerItem],
|
||||
@ -120,6 +131,7 @@ ProcessorState = TypedDict('ProcessorState',
|
||||
'face_editor_head_roll' : float,
|
||||
'face_enhancer_model' : FaceEnhancerModel,
|
||||
'face_enhancer_blend' : int,
|
||||
'face_enhancer_weight' : float,
|
||||
'face_swapper_model' : FaceSwapperModel,
|
||||
'face_swapper_pixel_boost' : str,
|
||||
'frame_colorizer_model' : FrameColorizerModel,
|
||||
@ -131,6 +143,9 @@ ProcessorState = TypedDict('ProcessorState',
|
||||
})
|
||||
ProcessorStateSet = Dict[AppContext, ProcessorState]
|
||||
|
||||
AgeModifierDirection = NDArray[Any]
|
||||
DeepSwapperMorph = NDArray[Any]
|
||||
FaceEnhancerWeight = NDArray[Any]
|
||||
LivePortraitPitch = float
|
||||
LivePortraitYaw = float
|
||||
LivePortraitRoll = float
|
||||
|
@ -1,13 +1,13 @@
|
||||
import tempfile
|
||||
from argparse import ArgumentParser, HelpFormatter
|
||||
|
||||
import facefusion.choices
|
||||
from facefusion import config, metadata, state_manager, wording
|
||||
from facefusion.common_helper import create_float_metavar, create_int_metavar
|
||||
from facefusion.execution import get_execution_provider_choices
|
||||
from facefusion.common_helper import create_float_metavar, create_int_metavar, get_last
|
||||
from facefusion.execution import get_available_execution_providers
|
||||
from facefusion.filesystem import list_directory
|
||||
from facefusion.jobs import job_store
|
||||
from facefusion.processors.core import get_processors_modules
|
||||
from facefusion.program_helper import remove_args, suggest_face_detector_choices
|
||||
|
||||
|
||||
def create_help_formatter_small(prog : str) -> HelpFormatter:
|
||||
@ -18,38 +18,86 @@ def create_help_formatter_large(prog : str) -> HelpFormatter:
|
||||
return HelpFormatter(prog, max_help_position = 300)
|
||||
|
||||
|
||||
def create_config_program() -> ArgumentParser:
|
||||
def create_config_path_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_paths = program.add_argument_group('paths')
|
||||
group_paths.add_argument('-c', '--config-path', help = wording.get('help.config_path'), default = 'facefusion.ini')
|
||||
job_store.register_job_keys([ 'config-path' ])
|
||||
group_paths.add_argument('--config-path', help = wording.get('help.config_path'), default = 'facefusion.ini')
|
||||
job_store.register_job_keys([ 'config_path' ])
|
||||
apply_config_path(program)
|
||||
return program
|
||||
|
||||
|
||||
def create_temp_path_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_paths = program.add_argument_group('paths')
|
||||
group_paths.add_argument('--temp-path', help = wording.get('help.temp_path'), default = config.get_str_value('paths.temp_path', tempfile.gettempdir()))
|
||||
job_store.register_job_keys([ 'temp_path' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_jobs_path_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_paths = program.add_argument_group('paths')
|
||||
group_paths.add_argument('-j', '--jobs-path', help = wording.get('help.jobs_path'), default = config.get_str_value('paths.jobs_path', '.jobs'))
|
||||
group_paths.add_argument('--jobs-path', help = wording.get('help.jobs_path'), default = config.get_str_value('paths.jobs_path', '.jobs'))
|
||||
job_store.register_job_keys([ 'jobs_path' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_paths_program() -> ArgumentParser:
|
||||
def create_source_paths_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_paths = program.add_argument_group('paths')
|
||||
group_paths.add_argument('-s', '--source-paths', help = wording.get('help.source_paths'), default = config.get_str_list('paths.source_paths'), nargs = '+')
|
||||
job_store.register_step_keys([ 'source_paths' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_target_path_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_paths = program.add_argument_group('paths')
|
||||
group_paths.add_argument('-s', '--source-paths', help = wording.get('help.source_paths'), action = 'append', default = config.get_str_list('paths.source_paths'))
|
||||
group_paths.add_argument('-t', '--target-path', help = wording.get('help.target_path'), default = config.get_str_value('paths.target_path'))
|
||||
job_store.register_step_keys([ 'target_path' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_output_path_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_paths = program.add_argument_group('paths')
|
||||
group_paths.add_argument('-o', '--output-path', help = wording.get('help.output_path'), default = config.get_str_value('paths.output_path'))
|
||||
job_store.register_step_keys([ 'source_paths', 'target_path', 'output_path' ])
|
||||
job_store.register_step_keys([ 'output_path' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_source_pattern_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_patterns = program.add_argument_group('patterns')
|
||||
group_patterns.add_argument('-s', '--source-pattern', help = wording.get('help.source_pattern'), default = config.get_str_value('patterns.source_pattern'))
|
||||
job_store.register_job_keys([ 'source_pattern' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_target_pattern_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_patterns = program.add_argument_group('patterns')
|
||||
group_patterns.add_argument('-t', '--target-pattern', help = wording.get('help.target_pattern'), default = config.get_str_value('patterns.target_pattern'))
|
||||
job_store.register_job_keys([ 'target_pattern' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_output_pattern_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_patterns = program.add_argument_group('patterns')
|
||||
group_patterns.add_argument('-o', '--output-pattern', help = wording.get('help.output_pattern'), default = config.get_str_value('patterns.output_pattern'))
|
||||
job_store.register_job_keys([ 'output_pattern' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_face_detector_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_face_detector = program.add_argument_group('face detector')
|
||||
group_face_detector.add_argument('--face-detector-model', help = wording.get('help.face_detector_model'), default = config.get_str_value('face_detector.face_detector_model', 'yoloface'), choices = facefusion.choices.face_detector_set.keys())
|
||||
group_face_detector.add_argument('--face-detector-size', help = wording.get('help.face_detector_size'), default = config.get_str_value('face_detector.face_detector_size', '640x640'), choices = suggest_face_detector_choices(program))
|
||||
group_face_detector.add_argument('--face-detector-model', help = wording.get('help.face_detector_model'), default = config.get_str_value('face_detector.face_detector_model', 'yoloface'), choices = facefusion.choices.face_detector_models)
|
||||
known_args, _ = program.parse_known_args()
|
||||
face_detector_size_choices = facefusion.choices.face_detector_set.get(known_args.face_detector_model)
|
||||
group_face_detector.add_argument('--face-detector-size', help = wording.get('help.face_detector_size'), default = config.get_str_value('face_detector.face_detector_size', get_last(face_detector_size_choices)), choices = face_detector_size_choices)
|
||||
group_face_detector.add_argument('--face-detector-angles', help = wording.get('help.face_detector_angles'), type = int, default = config.get_int_list('face_detector.face_detector_angles', '0'), choices = facefusion.choices.face_detector_angles, nargs = '+', metavar = 'FACE_DETECTOR_ANGLES')
|
||||
group_face_detector.add_argument('--face-detector-score', help = wording.get('help.face_detector_score'), type = float, default = config.get_float_value('face_detector.face_detector_score', '0.5'), choices = facefusion.choices.face_detector_score_range, metavar = create_float_metavar(facefusion.choices.face_detector_score_range))
|
||||
job_store.register_step_keys([ 'face_detector_model', 'face_detector_angles', 'face_detector_size', 'face_detector_score' ])
|
||||
@ -84,11 +132,13 @@ def create_face_selector_program() -> ArgumentParser:
|
||||
def create_face_masker_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_face_masker = program.add_argument_group('face masker')
|
||||
group_face_masker.add_argument('--face-occluder-model', help = wording.get('help.face_occluder_model'), default = config.get_str_value('face_detector.face_occluder_model', 'xseg_1'), choices = facefusion.choices.face_occluder_models)
|
||||
group_face_masker.add_argument('--face-parser-model', help = wording.get('help.face_parser_model'), default = config.get_str_value('face_detector.face_parser_model', 'bisenet_resnet_34'), choices = facefusion.choices.face_parser_models)
|
||||
group_face_masker.add_argument('--face-mask-types', help = wording.get('help.face_mask_types').format(choices = ', '.join(facefusion.choices.face_mask_types)), default = config.get_str_list('face_masker.face_mask_types', 'box'), choices = facefusion.choices.face_mask_types, nargs = '+', metavar = 'FACE_MASK_TYPES')
|
||||
group_face_masker.add_argument('--face-mask-blur', help = wording.get('help.face_mask_blur'), type = float, default = config.get_float_value('face_masker.face_mask_blur', '0.3'), choices = facefusion.choices.face_mask_blur_range, metavar = create_float_metavar(facefusion.choices.face_mask_blur_range))
|
||||
group_face_masker.add_argument('--face-mask-padding', help = wording.get('help.face_mask_padding'), type = int, default = config.get_int_list('face_masker.face_mask_padding', '0 0 0 0'), nargs = '+')
|
||||
group_face_masker.add_argument('--face-mask-regions', help = wording.get('help.face_mask_regions').format(choices = ', '.join(facefusion.choices.face_mask_regions)), default = config.get_str_list('face_masker.face_mask_regions', ' '.join(facefusion.choices.face_mask_regions)), choices = facefusion.choices.face_mask_regions, nargs = '+', metavar = 'FACE_MASK_REGIONS')
|
||||
job_store.register_step_keys([ 'face_mask_types', 'face_mask_blur', 'face_mask_padding', 'face_mask_regions' ])
|
||||
job_store.register_step_keys([ 'face_occluder_model', 'face_parser_model', 'face_mask_types', 'face_mask_blur', 'face_mask_padding', 'face_mask_regions' ])
|
||||
return program
|
||||
|
||||
|
||||
@ -121,7 +171,7 @@ def create_output_creation_program() -> ArgumentParser:
|
||||
|
||||
def create_processors_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
available_processors = list_directory('facefusion/processors/modules')
|
||||
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
|
||||
group_processors = program.add_argument_group('processors')
|
||||
group_processors.add_argument('--processors', help = wording.get('help.processors').format(choices = ', '.join(available_processors)), default = config.get_str_list('processors.processors', 'face_swapper'), nargs = '+')
|
||||
job_store.register_step_keys([ 'processors' ])
|
||||
@ -132,7 +182,7 @@ def create_processors_program() -> ArgumentParser:
|
||||
|
||||
def create_uis_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
available_ui_layouts = list_directory('facefusion/uis/layouts')
|
||||
available_ui_layouts = [ file.get('name') for file in list_directory('facefusion/uis/layouts') ]
|
||||
group_uis = program.add_argument_group('uis')
|
||||
group_uis.add_argument('--open-browser', help = wording.get('help.open_browser'), action = 'store_true', default = config.get_bool_value('uis.open_browser'))
|
||||
group_uis.add_argument('--ui-layouts', help = wording.get('help.ui_layouts').format(choices = ', '.join(available_ui_layouts)), default = config.get_str_list('uis.ui_layouts', 'default'), nargs = '+')
|
||||
@ -142,16 +192,33 @@ def create_uis_program() -> ArgumentParser:
|
||||
|
||||
def create_execution_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
execution_providers = get_execution_provider_choices()
|
||||
available_execution_providers = get_available_execution_providers()
|
||||
group_execution = program.add_argument_group('execution')
|
||||
group_execution.add_argument('--execution-device-id', help = wording.get('help.execution_device_id'), default = config.get_str_value('execution.execution_device_id', '0'))
|
||||
group_execution.add_argument('--execution-providers', help = wording.get('help.execution_providers').format(choices = ', '.join(execution_providers)), default = config.get_str_list('execution.execution_providers', 'cpu'), choices = execution_providers, nargs = '+', metavar = 'EXECUTION_PROVIDERS')
|
||||
group_execution.add_argument('--execution-providers', help = wording.get('help.execution_providers').format(choices = ', '.join(available_execution_providers)), default = config.get_str_list('execution.execution_providers', 'cpu'), choices = available_execution_providers, nargs = '+', metavar = 'EXECUTION_PROVIDERS')
|
||||
group_execution.add_argument('--execution-thread-count', help = wording.get('help.execution_thread_count'), type = int, default = config.get_int_value('execution.execution_thread_count', '4'), choices = facefusion.choices.execution_thread_count_range, metavar = create_int_metavar(facefusion.choices.execution_thread_count_range))
|
||||
group_execution.add_argument('--execution-queue-count', help = wording.get('help.execution_queue_count'), type = int, default = config.get_int_value('execution.execution_queue_count', '1'), choices = facefusion.choices.execution_queue_count_range, metavar = create_int_metavar(facefusion.choices.execution_queue_count_range))
|
||||
job_store.register_job_keys([ 'execution_device_id', 'execution_providers', 'execution_thread_count', 'execution_queue_count' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_download_providers_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
download_providers = list(facefusion.choices.download_provider_set.keys())
|
||||
group_download = program.add_argument_group('download')
|
||||
group_download.add_argument('--download-providers', help = wording.get('help.download_providers').format(choices = ', '.join(download_providers)), default = config.get_str_list('download.download_providers', ' '.join(facefusion.choices.download_providers)), choices = download_providers, nargs = '+', metavar = 'DOWNLOAD_PROVIDERS')
|
||||
job_store.register_job_keys([ 'download_providers' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_download_scope_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_download = program.add_argument_group('download')
|
||||
group_download.add_argument('--download-scope', help = wording.get('help.download_scope'), default = config.get_str_value('download.download_scope', 'lite'), choices = facefusion.choices.download_scopes)
|
||||
job_store.register_job_keys([ 'download_scope' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_memory_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_memory = program.add_argument_group('memory')
|
||||
@ -161,18 +228,11 @@ def create_memory_program() -> ArgumentParser:
|
||||
return program
|
||||
|
||||
|
||||
def create_skip_download_program() -> ArgumentParser:
|
||||
def create_misc_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
log_level_keys = list(facefusion.choices.log_level_set.keys())
|
||||
group_misc = program.add_argument_group('misc')
|
||||
group_misc.add_argument('--skip-download', help = wording.get('help.skip_download'), action = 'store_true', default = config.get_bool_value('misc.skip_download'))
|
||||
job_store.register_job_keys([ 'skip_download' ])
|
||||
return program
|
||||
|
||||
|
||||
def create_log_level_program() -> ArgumentParser:
|
||||
program = ArgumentParser(add_help = False)
|
||||
group_misc = program.add_argument_group('misc')
|
||||
group_misc.add_argument('--log-level', help = wording.get('help.log_level'), default = config.get_str_value('misc.log_level', 'info'), choices = facefusion.choices.log_level_set.keys())
|
||||
group_misc.add_argument('--log-level', help = wording.get('help.log_level'), default = config.get_str_value('misc.log_level', 'info'), choices = log_level_keys)
|
||||
job_store.register_job_keys([ 'log_level' ])
|
||||
return program
|
||||
|
||||
@ -197,11 +257,11 @@ def create_step_index_program() -> ArgumentParser:
|
||||
|
||||
|
||||
def collect_step_program() -> ArgumentParser:
|
||||
return ArgumentParser(parents= [ create_config_program(), create_jobs_path_program(), create_paths_program(), create_face_detector_program(), create_face_landmarker_program(), create_face_selector_program(), create_face_masker_program(), create_frame_extraction_program(), create_output_creation_program(), create_processors_program() ], add_help = False)
|
||||
return ArgumentParser(parents= [ create_face_detector_program(), create_face_landmarker_program(), create_face_selector_program(), create_face_masker_program(), create_frame_extraction_program(), create_output_creation_program(), create_processors_program() ], add_help = False)
|
||||
|
||||
|
||||
def collect_job_program() -> ArgumentParser:
|
||||
return ArgumentParser(parents= [ create_execution_program(), create_memory_program(), create_skip_download_program(), create_log_level_program() ], add_help = False)
|
||||
return ArgumentParser(parents= [ create_execution_program(), create_download_providers_program(), create_memory_program(), create_misc_program() ], add_help = False)
|
||||
|
||||
|
||||
def create_program() -> ArgumentParser:
|
||||
@ -210,25 +270,26 @@ def create_program() -> ArgumentParser:
|
||||
program.add_argument('-v', '--version', version = metadata.get('name') + ' ' + metadata.get('version'), action = 'version')
|
||||
sub_program = program.add_subparsers(dest = 'command')
|
||||
# general
|
||||
sub_program.add_parser('run', help = wording.get('help.run'), parents = [ collect_step_program(), create_uis_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('headless-run', help = wording.get('help.headless_run'), parents = [ collect_step_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('force-download', help = wording.get('help.force_download'), parents = [ create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('run', help = wording.get('help.run'), parents = [ create_config_path_program(), create_temp_path_program(), create_jobs_path_program(), create_source_paths_program(), create_target_path_program(), create_output_path_program(), collect_step_program(), create_uis_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('headless-run', help = wording.get('help.headless_run'), parents = [ create_config_path_program(), create_temp_path_program(), create_jobs_path_program(), create_source_paths_program(), create_target_path_program(), create_output_path_program(), collect_step_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('batch-run', help = wording.get('help.batch_run'), parents = [ create_config_path_program(), create_temp_path_program(), create_jobs_path_program(), create_source_pattern_program(), create_target_pattern_program(), create_output_pattern_program(), collect_step_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('force-download', help = wording.get('help.force_download'), parents = [ create_download_providers_program(), create_download_scope_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
# job manager
|
||||
sub_program.add_parser('job-list', help = wording.get('help.job_list'), parents = [ create_job_status_program(), create_jobs_path_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-create', help = wording.get('help.job_create'), parents = [ create_job_id_program(), create_jobs_path_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-submit', help = wording.get('help.job_submit'), parents = [ create_job_id_program(), create_jobs_path_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-submit-all', help = wording.get('help.job_submit_all'), parents = [ create_jobs_path_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-delete', help = wording.get('help.job_delete'), parents = [ create_job_id_program(), create_jobs_path_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-delete-all', help = wording.get('help.job_delete_all'), parents = [ create_jobs_path_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-add-step', help = wording.get('help.job_add_step'), parents = [ create_job_id_program(), collect_step_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-remix-step', help = wording.get('help.job_remix_step'), parents = [ create_job_id_program(), create_step_index_program(), remove_args(collect_step_program(), [ 'target_path' ]), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-insert-step', help = wording.get('help.job_insert_step'), parents = [ create_job_id_program(), create_step_index_program(), collect_step_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-remove-step', help = wording.get('help.job_remove_step'), parents = [ create_job_id_program(), create_step_index_program(), create_jobs_path_program(), create_log_level_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-list', help = wording.get('help.job_list'), parents = [ create_job_status_program(), create_jobs_path_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-create', help = wording.get('help.job_create'), parents = [ create_job_id_program(), create_jobs_path_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-submit', help = wording.get('help.job_submit'), parents = [ create_job_id_program(), create_jobs_path_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-submit-all', help = wording.get('help.job_submit_all'), parents = [ create_jobs_path_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-delete', help = wording.get('help.job_delete'), parents = [ create_job_id_program(), create_jobs_path_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-delete-all', help = wording.get('help.job_delete_all'), parents = [ create_jobs_path_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-add-step', help = wording.get('help.job_add_step'), parents = [ create_job_id_program(), create_config_path_program(), create_jobs_path_program(), create_source_paths_program(), create_target_path_program(), create_output_path_program(), collect_step_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-remix-step', help = wording.get('help.job_remix_step'), parents = [ create_job_id_program(), create_step_index_program(), create_config_path_program(), create_jobs_path_program(), create_source_paths_program(), create_output_path_program(), collect_step_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-insert-step', help = wording.get('help.job_insert_step'), parents = [ create_job_id_program(), create_step_index_program(), create_config_path_program(), create_jobs_path_program(), create_source_paths_program(), create_target_path_program(), create_output_path_program(), collect_step_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-remove-step', help = wording.get('help.job_remove_step'), parents = [ create_job_id_program(), create_step_index_program(), create_jobs_path_program(), create_misc_program() ], formatter_class = create_help_formatter_large)
|
||||
# job runner
|
||||
sub_program.add_parser('job-run', help = wording.get('help.job_run'), parents = [ create_job_id_program(), create_config_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-run-all', help = wording.get('help.job_run_all'), parents = [ create_config_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-retry', help = wording.get('help.job_retry'), parents = [ create_job_id_program(), create_config_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-retry-all', help = wording.get('help.job_retry_all'), parents = [ create_config_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-run', help = wording.get('help.job_run'), parents = [ create_job_id_program(), create_config_path_program(), create_temp_path_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-run-all', help = wording.get('help.job_run_all'), parents = [ create_config_path_program(), create_temp_path_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-retry', help = wording.get('help.job_retry'), parents = [ create_job_id_program(), create_config_path_program(), create_temp_path_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
sub_program.add_parser('job-retry-all', help = wording.get('help.job_retry_all'), parents = [ create_config_path_program(), create_temp_path_program(), create_jobs_path_program(), collect_job_program() ], formatter_class = create_help_formatter_large)
|
||||
return ArgumentParser(parents = [ program ], formatter_class = create_help_formatter_small, add_help = True)
|
||||
|
||||
|
||||
|
@ -1,8 +1,5 @@
|
||||
from argparse import ArgumentParser, _ArgumentGroup, _SubParsersAction
|
||||
from typing import List, Optional
|
||||
|
||||
import facefusion.choices
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from typing import Optional
|
||||
|
||||
|
||||
def find_argument_group(program : ArgumentParser, group_name : str) -> Optional[_ArgumentGroup]:
|
||||
@ -32,21 +29,3 @@ def validate_actions(program : ArgumentParser) -> bool:
|
||||
elif action.default not in action.choices:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def remove_args(program : ArgumentParser, remove_names : List[str]) -> ArgumentParser:
|
||||
actions = [ action for action in program._actions if action.dest in remove_names ]
|
||||
|
||||
for action in actions:
|
||||
program._actions.remove(action)
|
||||
return program
|
||||
|
||||
|
||||
def suggest_face_detector_choices(program : ArgumentParser) -> List[str]:
|
||||
known_args, _ = program.parse_known_args()
|
||||
return facefusion.choices.face_detector_set.get(known_args.face_detector_model) #type:ignore[call-overload]
|
||||
|
||||
|
||||
def suggest_face_swapper_pixel_boost_choices(program : ArgumentParser) -> List[str]:
|
||||
known_args, _ = program.parse_known_args()
|
||||
return processors_choices.face_swapper_set.get(known_args.face_swapper_model) #type:ignore[call-overload]
|
||||
|
@ -1,10 +1,8 @@
|
||||
import glob
|
||||
import os
|
||||
import tempfile
|
||||
from typing import List
|
||||
|
||||
from facefusion import state_manager
|
||||
from facefusion.filesystem import create_directory, move_file, remove_directory
|
||||
from facefusion.filesystem import create_directory, move_file, remove_directory, resolve_file_pattern
|
||||
|
||||
|
||||
def get_temp_file_path(file_path : str) -> str:
|
||||
@ -18,34 +16,9 @@ def move_temp_file(file_path : str, move_path : str) -> bool:
|
||||
return move_file(temp_file_path, move_path)
|
||||
|
||||
|
||||
def get_temp_frame_paths(target_path : str) -> List[str]:
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '*')
|
||||
return sorted(glob.glob(temp_frames_pattern))
|
||||
|
||||
|
||||
def get_temp_frames_pattern(target_path : str, temp_frame_prefix : str) -> str:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
return os.path.join(temp_directory_path, temp_frame_prefix + '.' + state_manager.get_item('temp_frame_format'))
|
||||
|
||||
|
||||
def get_base_directory_path() -> str:
|
||||
return os.path.join(tempfile.gettempdir(), 'facefusion')
|
||||
|
||||
|
||||
def create_base_directory() -> bool:
|
||||
base_directory_path = get_base_directory_path()
|
||||
return create_directory(base_directory_path)
|
||||
|
||||
|
||||
def clear_base_directory() -> bool:
|
||||
base_directory_path = get_base_directory_path()
|
||||
return remove_directory(base_directory_path)
|
||||
|
||||
|
||||
def get_temp_directory_path(file_path : str) -> str:
|
||||
temp_file_name, _ = os.path.splitext(os.path.basename(file_path))
|
||||
base_directory_path = get_base_directory_path()
|
||||
return os.path.join(base_directory_path, temp_file_name)
|
||||
return os.path.join(state_manager.get_item('temp_path'), 'facefusion', temp_file_name)
|
||||
|
||||
|
||||
def create_temp_directory(file_path : str) -> bool:
|
||||
@ -58,3 +31,13 @@ def clear_temp_directory(file_path : str) -> bool:
|
||||
temp_directory_path = get_temp_directory_path(file_path)
|
||||
return remove_directory(temp_directory_path)
|
||||
return True
|
||||
|
||||
|
||||
def get_temp_frame_paths(target_path : str) -> List[str]:
|
||||
temp_frames_pattern = get_temp_frames_pattern(target_path, '*')
|
||||
return resolve_file_pattern(temp_frames_pattern)
|
||||
|
||||
|
||||
def get_temp_frames_pattern(target_path : str, temp_frame_prefix : str) -> str:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
return os.path.join(temp_directory_path, temp_frame_prefix + '.' + state_manager.get_item('temp_frame_format'))
|
||||
|
@ -67,6 +67,7 @@ Mel = NDArray[Any]
|
||||
MelFilterBank = NDArray[Any]
|
||||
|
||||
Fps = float
|
||||
Duration = float
|
||||
Padding = Tuple[int, int, int, int]
|
||||
Orientation = Literal['landscape', 'portrait']
|
||||
Resolution = Tuple[int, int]
|
||||
@ -84,7 +85,7 @@ ProcessStep = Callable[[str, int, Args], bool]
|
||||
|
||||
Content = Dict[str, Any]
|
||||
|
||||
WarpTemplate = Literal['arcface_112_v1', 'arcface_112_v2', 'arcface_128_v2', 'ffhq_512']
|
||||
WarpTemplate = Literal['arcface_112_v1', 'arcface_112_v2', 'arcface_128_v2', 'dfl_whole_face', 'ffhq_512', 'mtcnn_512', 'styleganex_384']
|
||||
WarpTemplateSet = Dict[WarpTemplate, NDArray[Any]]
|
||||
ProcessMode = Literal['output', 'preview', 'stream']
|
||||
|
||||
@ -95,34 +96,28 @@ LogLevelSet = Dict[LogLevel, int]
|
||||
TableHeaders = List[str]
|
||||
TableContents = List[List[Any]]
|
||||
|
||||
VideoMemoryStrategy = Literal['strict', 'moderate', 'tolerant']
|
||||
FaceDetectorModel = Literal['many', 'retinaface', 'scrfd', 'yoloface']
|
||||
FaceLandmarkerModel = Literal['many', '2dfan4', 'peppa_wutz']
|
||||
FaceDetectorSet = Dict[FaceDetectorModel, List[str]]
|
||||
FaceSelectorMode = Literal['many', 'one', 'reference']
|
||||
FaceSelectorOrder = Literal['left-right', 'right-left', 'top-bottom', 'bottom-top', 'small-large', 'large-small', 'best-worst', 'worst-best']
|
||||
FaceOccluderModel = Literal['xseg_1', 'xseg_2']
|
||||
FaceParserModel = Literal['bisenet_resnet_18', 'bisenet_resnet_34']
|
||||
FaceMaskType = Literal['box', 'occlusion', 'region']
|
||||
FaceMaskRegion = Literal['skin', 'left-eyebrow', 'right-eyebrow', 'left-eye', 'right-eye', 'glasses', 'nose', 'mouth', 'upper-lip', 'lower-lip']
|
||||
TempFrameFormat = Literal['jpg', 'png', 'bmp']
|
||||
FaceMaskRegionSet = Dict[FaceMaskRegion, int]
|
||||
TempFrameFormat = Literal['bmp', 'jpg', 'png']
|
||||
OutputAudioEncoder = Literal['aac', 'libmp3lame', 'libopus', 'libvorbis']
|
||||
OutputVideoEncoder = Literal['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf', 'h264_videotoolbox', 'hevc_videotoolbox']
|
||||
OutputVideoEncoder = Literal['libx264', 'libx265', 'libvpx-vp9', 'h264_nvenc', 'hevc_nvenc', 'h264_amf', 'hevc_amf','h264_qsv', 'hevc_qsv', 'h264_videotoolbox', 'hevc_videotoolbox']
|
||||
OutputVideoPreset = Literal['ultrafast', 'superfast', 'veryfast', 'faster', 'fast', 'medium', 'slow', 'slower', 'veryslow']
|
||||
|
||||
Download = TypedDict('Download',
|
||||
{
|
||||
'url' : str,
|
||||
'path' : str
|
||||
})
|
||||
DownloadSet = Dict[str, Download]
|
||||
|
||||
ModelOptions = Dict[str, Any]
|
||||
ModelSet = Dict[str, ModelOptions]
|
||||
ModelInitializer = NDArray[Any]
|
||||
|
||||
ExecutionProviderKey = Literal['cpu', 'coreml', 'cuda', 'directml', 'openvino', 'rocm', 'tensorrt']
|
||||
ExecutionProvider = Literal['cpu', 'coreml', 'cuda', 'directml', 'openvino', 'rocm', 'tensorrt']
|
||||
ExecutionProviderValue = Literal['CPUExecutionProvider', 'CoreMLExecutionProvider', 'CUDAExecutionProvider', 'DmlExecutionProvider', 'OpenVINOExecutionProvider', 'ROCMExecutionProvider', 'TensorrtExecutionProvider']
|
||||
ExecutionProviderSet = Dict[ExecutionProviderKey, ExecutionProviderValue]
|
||||
|
||||
ExecutionProviderSet = Dict[ExecutionProvider, ExecutionProviderValue]
|
||||
ValueAndUnit = TypedDict('ValueAndUnit',
|
||||
{
|
||||
'value' : int,
|
||||
@ -140,13 +135,18 @@ ExecutionDeviceProduct = TypedDict('ExecutionDeviceProduct',
|
||||
})
|
||||
ExecutionDeviceVideoMemory = TypedDict('ExecutionDeviceVideoMemory',
|
||||
{
|
||||
'total' : ValueAndUnit,
|
||||
'free' : ValueAndUnit
|
||||
'total' : Optional[ValueAndUnit],
|
||||
'free' : Optional[ValueAndUnit]
|
||||
})
|
||||
ExecutionDeviceTemperature = TypedDict('ExecutionDeviceTemperature',
|
||||
{
|
||||
'gpu' : Optional[ValueAndUnit],
|
||||
'memory' : Optional[ValueAndUnit]
|
||||
})
|
||||
ExecutionDeviceUtilization = TypedDict('ExecutionDeviceUtilization',
|
||||
{
|
||||
'gpu' : ValueAndUnit,
|
||||
'memory' : ValueAndUnit
|
||||
'gpu' : Optional[ValueAndUnit],
|
||||
'memory' : Optional[ValueAndUnit]
|
||||
})
|
||||
ExecutionDevice = TypedDict('ExecutionDevice',
|
||||
{
|
||||
@ -154,9 +154,34 @@ ExecutionDevice = TypedDict('ExecutionDevice',
|
||||
'framework' : ExecutionDeviceFramework,
|
||||
'product' : ExecutionDeviceProduct,
|
||||
'video_memory' : ExecutionDeviceVideoMemory,
|
||||
'temperature': ExecutionDeviceTemperature,
|
||||
'utilization' : ExecutionDeviceUtilization
|
||||
})
|
||||
|
||||
DownloadProvider = Literal['github', 'huggingface']
|
||||
DownloadProviderValue = TypedDict('DownloadProviderValue',
|
||||
{
|
||||
'url' : str,
|
||||
'path' : str
|
||||
})
|
||||
DownloadProviderSet = Dict[DownloadProvider, DownloadProviderValue]
|
||||
DownloadScope = Literal['lite', 'full']
|
||||
Download = TypedDict('Download',
|
||||
{
|
||||
'url' : str,
|
||||
'path' : str
|
||||
})
|
||||
DownloadSet = Dict[str, Download]
|
||||
|
||||
VideoMemoryStrategy = Literal['strict', 'moderate', 'tolerant']
|
||||
|
||||
File = TypedDict('File',
|
||||
{
|
||||
'name' : str,
|
||||
'extension' : str,
|
||||
'path': str
|
||||
})
|
||||
|
||||
AppContext = Literal['cli', 'ui']
|
||||
|
||||
InferencePool = Dict[str, InferenceSession]
|
||||
@ -191,10 +216,14 @@ StateKey = Literal\
|
||||
[
|
||||
'command',
|
||||
'config_path',
|
||||
'temp_path',
|
||||
'jobs_path',
|
||||
'source_paths',
|
||||
'target_path',
|
||||
'output_path',
|
||||
'source_pattern',
|
||||
'target_pattern',
|
||||
'output_pattern',
|
||||
'face_detector_model',
|
||||
'face_detector_size',
|
||||
'face_detector_angles',
|
||||
@ -210,6 +239,8 @@ StateKey = Literal\
|
||||
'reference_face_position',
|
||||
'reference_face_distance',
|
||||
'reference_frame_number',
|
||||
'face_occluder_model',
|
||||
'face_parser_model',
|
||||
'face_mask_types',
|
||||
'face_mask_blur',
|
||||
'face_mask_padding',
|
||||
@ -235,9 +266,10 @@ StateKey = Literal\
|
||||
'execution_providers',
|
||||
'execution_thread_count',
|
||||
'execution_queue_count',
|
||||
'download_providers',
|
||||
'download_scope',
|
||||
'video_memory_strategy',
|
||||
'system_memory_limit',
|
||||
'skip_download',
|
||||
'log_level',
|
||||
'job_id',
|
||||
'job_status',
|
||||
@ -247,10 +279,14 @@ State = TypedDict('State',
|
||||
{
|
||||
'command' : str,
|
||||
'config_path' : str,
|
||||
'temp_path' : str,
|
||||
'jobs_path' : str,
|
||||
'source_paths' : List[str],
|
||||
'target_path' : str,
|
||||
'output_path' : str,
|
||||
'source_pattern' : str,
|
||||
'target_pattern' : str,
|
||||
'output_pattern' : str,
|
||||
'face_detector_model' : FaceDetectorModel,
|
||||
'face_detector_size' : str,
|
||||
'face_detector_angles' : List[Angle],
|
||||
@ -266,6 +302,8 @@ State = TypedDict('State',
|
||||
'reference_face_position' : int,
|
||||
'reference_face_distance' : float,
|
||||
'reference_frame_number' : int,
|
||||
'face_occluder_model' : FaceOccluderModel,
|
||||
'face_parser_model' : FaceParserModel,
|
||||
'face_mask_types' : List[FaceMaskType],
|
||||
'face_mask_blur' : float,
|
||||
'face_mask_padding' : Padding,
|
||||
@ -288,12 +326,13 @@ State = TypedDict('State',
|
||||
'ui_layouts' : List[str],
|
||||
'ui_workflow' : UiWorkflow,
|
||||
'execution_device_id' : str,
|
||||
'execution_providers' : List[ExecutionProviderKey],
|
||||
'execution_providers' : List[ExecutionProvider],
|
||||
'execution_thread_count' : int,
|
||||
'execution_queue_count' : int,
|
||||
'download_providers' : List[DownloadProvider],
|
||||
'download_scope' : DownloadScope,
|
||||
'video_memory_strategy' : VideoMemoryStrategy,
|
||||
'system_memory_limit' : int,
|
||||
'skip_download' : bool,
|
||||
'log_level' : LogLevel,
|
||||
'job_id' : str,
|
||||
'job_status' : JobStatus,
|
||||
|
@ -6,7 +6,29 @@
|
||||
|
||||
:root:root:root:root input[type="number"]
|
||||
{
|
||||
max-width: 6rem;
|
||||
appearance: textfield;
|
||||
border-radius: unset;
|
||||
text-align: center;
|
||||
order: 1;
|
||||
padding: unset
|
||||
}
|
||||
|
||||
:root:root:root:root input[type="number"]::-webkit-inner-spin-button
|
||||
{
|
||||
appearance: none;
|
||||
}
|
||||
|
||||
:root:root:root:root input[type="number"]:focus
|
||||
{
|
||||
outline: unset;
|
||||
}
|
||||
|
||||
:root:root:root:root .reset-button
|
||||
{
|
||||
background: var(--background-fill-secondary);
|
||||
border: unset;
|
||||
font-size: unset;
|
||||
padding: unset;
|
||||
}
|
||||
|
||||
:root:root:root:root [type="checkbox"],
|
||||
@ -17,39 +39,25 @@
|
||||
width: 1.125rem;
|
||||
}
|
||||
|
||||
:root:root:root:root input[type="range"],
|
||||
:root:root:root:root .range-slider div
|
||||
:root:root:root:root input[type="range"]
|
||||
{
|
||||
height: 0.5rem;
|
||||
border-radius: 0.5rem;
|
||||
background: transparent;
|
||||
}
|
||||
|
||||
:root:root:root:root input[type="range"]::-moz-range-thumb,
|
||||
:root:root:root:root input[type="range"]::-webkit-slider-thumb
|
||||
{
|
||||
background: var(--neutral-300);
|
||||
border: unset;
|
||||
box-shadow: unset;
|
||||
border-radius: 50%;
|
||||
height: 1.125rem;
|
||||
width: 1.125rem;
|
||||
}
|
||||
|
||||
:root:root:root:root input[type="range"]::-webkit-slider-thumb
|
||||
:root:root:root:root .thumbnail-item
|
||||
{
|
||||
margin-top: 0.375rem;
|
||||
}
|
||||
|
||||
:root:root:root:root .range-slider input[type="range"]::-webkit-slider-thumb
|
||||
{
|
||||
margin-top: 0.125rem;
|
||||
}
|
||||
|
||||
:root:root:root:root .range-slider div,
|
||||
:root:root:root:root .range-slider input[type="range"]
|
||||
{
|
||||
bottom: 50%;
|
||||
margin-top: -0.25rem;
|
||||
top: 50%;
|
||||
border: unset;
|
||||
box-shadow: unset;
|
||||
}
|
||||
|
||||
:root:root:root:root .grid-wrap.fixed-height
|
||||
@ -57,27 +65,61 @@
|
||||
min-height: unset;
|
||||
}
|
||||
|
||||
:root:root:root:root .generating,
|
||||
:root:root:root:root .thumbnail-item
|
||||
:root:root:root:root .tab-wrapper
|
||||
{
|
||||
border: unset;
|
||||
padding: 0 0.625rem;
|
||||
}
|
||||
|
||||
:root:root:root:root .tab-container
|
||||
{
|
||||
gap: 0.5em;
|
||||
}
|
||||
|
||||
:root:root:root:root .tab-container button
|
||||
{
|
||||
background: unset;
|
||||
border-bottom: 0.125rem solid;
|
||||
}
|
||||
|
||||
:root:root:root:root .tab-container button.selected
|
||||
{
|
||||
color: var(--primary-500)
|
||||
}
|
||||
|
||||
:root:root:root:root .toast-body
|
||||
{
|
||||
background: white;
|
||||
color: var(--primary-500);
|
||||
border: unset;
|
||||
border-radius: unset;
|
||||
}
|
||||
|
||||
:root:root:root:root .dark .toast-body
|
||||
{
|
||||
background: var(--neutral-900);
|
||||
color: var(--primary-600);
|
||||
}
|
||||
|
||||
:root:root:root:root .toast-icon,
|
||||
:root:root:root:root .toast-title,
|
||||
:root:root:root:root .toast-text,
|
||||
:root:root:root:root .toast-close
|
||||
{
|
||||
color: unset;
|
||||
}
|
||||
|
||||
:root:root:root:root .toast-body .timer
|
||||
{
|
||||
background: currentColor;
|
||||
}
|
||||
|
||||
:root:root:root:root .slider_input_container > span,
|
||||
:root:root:root:root .feather-upload,
|
||||
:root:root:root:root footer
|
||||
{
|
||||
display: none;
|
||||
}
|
||||
|
||||
:root:root:root:root .tab-nav > button
|
||||
{
|
||||
border: unset;
|
||||
box-shadow: 0 0.125rem;
|
||||
font-size: 1.125em;
|
||||
margin: 0.5rem 0.75rem;
|
||||
padding: unset;
|
||||
}
|
||||
|
||||
:root:root:root:root .image-frame
|
||||
{
|
||||
width: 100%;
|
||||
@ -94,3 +136,11 @@
|
||||
top: 0;
|
||||
z-index: 100;
|
||||
}
|
||||
|
||||
:root:root:root:root .block .error
|
||||
{
|
||||
border: 0.125rem solid;
|
||||
padding: 0.375rem 0.75rem;
|
||||
font-size: 0.75rem;
|
||||
text-transform: uppercase;
|
||||
}
|
||||
|
@ -5,7 +5,7 @@ from facefusion.uis.typing import JobManagerAction, JobRunnerAction, WebcamMode
|
||||
job_manager_actions : List[JobManagerAction] = [ 'job-create', 'job-submit', 'job-delete', 'job-add-step', 'job-remix-step', 'job-insert-step', 'job-remove-step' ]
|
||||
job_runner_actions : List[JobRunnerAction] = [ 'job-run', 'job-run-all', 'job-retry', 'job-retry-all' ]
|
||||
|
||||
common_options : List[str] = [ 'keep-temp', 'skip-audio', 'skip-download' ]
|
||||
common_options : List[str] = [ 'keep-temp', 'skip-audio' ]
|
||||
|
||||
webcam_modes : List[WebcamMode] = [ 'inline', 'udp', 'v4l2' ]
|
||||
webcam_resolutions : List[str] = [ '320x240', '640x480', '800x600', '1024x768', '1280x720', '1280x960', '1920x1080', '2560x1440', '3840x2160' ]
|
||||
|
@ -17,11 +17,12 @@ def render() -> None:
|
||||
global AGE_MODIFIER_MODEL_DROPDOWN
|
||||
global AGE_MODIFIER_DIRECTION_SLIDER
|
||||
|
||||
has_age_modifier = 'age_modifier' in state_manager.get_item('processors')
|
||||
AGE_MODIFIER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.age_modifier_model_dropdown'),
|
||||
choices = processors_choices.age_modifier_models,
|
||||
value = state_manager.get_item('age_modifier_model'),
|
||||
visible = 'age_modifier' in state_manager.get_item('processors')
|
||||
visible = has_age_modifier
|
||||
)
|
||||
AGE_MODIFIER_DIRECTION_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.age_modifier_direction_slider'),
|
||||
@ -29,7 +30,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.age_modifier_direction_range),
|
||||
minimum = processors_choices.age_modifier_direction_range[0],
|
||||
maximum = processors_choices.age_modifier_direction_range[-1],
|
||||
visible = 'age_modifier' in state_manager.get_item('processors')
|
||||
visible = has_age_modifier
|
||||
)
|
||||
register_ui_component('age_modifier_model_dropdown', AGE_MODIFIER_MODEL_DROPDOWN)
|
||||
register_ui_component('age_modifier_direction_slider', AGE_MODIFIER_DIRECTION_SLIDER)
|
||||
|
@ -16,8 +16,8 @@ def render() -> None:
|
||||
|
||||
BENCHMARK_RUNS_CHECKBOX_GROUP = gradio.CheckboxGroup(
|
||||
label = wording.get('uis.benchmark_runs_checkbox_group'),
|
||||
value = list(BENCHMARKS.keys()),
|
||||
choices = list(BENCHMARKS.keys())
|
||||
choices = list(BENCHMARKS.keys()),
|
||||
value = list(BENCHMARKS.keys())
|
||||
)
|
||||
BENCHMARK_CYCLES_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.benchmark_cycles_slider'),
|
||||
|
@ -13,8 +13,6 @@ def render() -> None:
|
||||
|
||||
common_options = []
|
||||
|
||||
if state_manager.get_item('skip_download'):
|
||||
common_options.append('skip-download')
|
||||
if state_manager.get_item('keep_temp'):
|
||||
common_options.append('keep-temp')
|
||||
if state_manager.get_item('skip_audio'):
|
||||
@ -32,9 +30,7 @@ def listen() -> None:
|
||||
|
||||
|
||||
def update(common_options : List[str]) -> None:
|
||||
skip_temp = 'skip-download' in common_options
|
||||
keep_temp = 'keep-temp' in common_options
|
||||
skip_audio = 'skip-audio' in common_options
|
||||
state_manager.set_item('skip_download', skip_temp)
|
||||
state_manager.set_item('keep_temp', keep_temp)
|
||||
state_manager.set_item('skip_audio', skip_audio)
|
||||
|
65
facefusion/uis/components/deep_swapper_options.py
Executable file
65
facefusion/uis/components/deep_swapper_options.py
Executable file
@ -0,0 +1,65 @@
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import gradio
|
||||
|
||||
from facefusion import state_manager, wording
|
||||
from facefusion.common_helper import calc_int_step
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.core import load_processor_module
|
||||
from facefusion.processors.modules.deep_swapper import has_morph_input
|
||||
from facefusion.processors.typing import DeepSwapperModel
|
||||
from facefusion.uis.core import get_ui_component, register_ui_component
|
||||
|
||||
DEEP_SWAPPER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
DEEP_SWAPPER_MORPH_SLIDER : Optional[gradio.Slider] = None
|
||||
|
||||
|
||||
def render() -> None:
|
||||
global DEEP_SWAPPER_MODEL_DROPDOWN
|
||||
global DEEP_SWAPPER_MORPH_SLIDER
|
||||
|
||||
has_deep_swapper = 'deep_swapper' in state_manager.get_item('processors')
|
||||
DEEP_SWAPPER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.deep_swapper_model_dropdown'),
|
||||
choices = processors_choices.deep_swapper_models,
|
||||
value = state_manager.get_item('deep_swapper_model'),
|
||||
visible = has_deep_swapper
|
||||
)
|
||||
DEEP_SWAPPER_MORPH_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.deep_swapper_morph_slider'),
|
||||
value = state_manager.get_item('deep_swapper_morph'),
|
||||
step = calc_int_step(processors_choices.deep_swapper_morph_range),
|
||||
minimum = processors_choices.deep_swapper_morph_range[0],
|
||||
maximum = processors_choices.deep_swapper_morph_range[-1],
|
||||
visible = has_deep_swapper and has_morph_input()
|
||||
)
|
||||
register_ui_component('deep_swapper_model_dropdown', DEEP_SWAPPER_MODEL_DROPDOWN)
|
||||
register_ui_component('deep_swapper_morph_slider', DEEP_SWAPPER_MORPH_SLIDER)
|
||||
|
||||
|
||||
def listen() -> None:
|
||||
DEEP_SWAPPER_MODEL_DROPDOWN.change(update_deep_swapper_model, inputs = DEEP_SWAPPER_MODEL_DROPDOWN, outputs = [ DEEP_SWAPPER_MODEL_DROPDOWN, DEEP_SWAPPER_MORPH_SLIDER ])
|
||||
DEEP_SWAPPER_MORPH_SLIDER.release(update_deep_swapper_morph, inputs = DEEP_SWAPPER_MORPH_SLIDER)
|
||||
|
||||
processors_checkbox_group = get_ui_component('processors_checkbox_group')
|
||||
if processors_checkbox_group:
|
||||
processors_checkbox_group.change(remote_update, inputs = processors_checkbox_group, outputs = [ DEEP_SWAPPER_MODEL_DROPDOWN, DEEP_SWAPPER_MORPH_SLIDER ])
|
||||
|
||||
|
||||
def remote_update(processors : List[str]) -> Tuple[gradio.Dropdown, gradio.Slider]:
|
||||
has_deep_swapper = 'deep_swapper' in processors
|
||||
return gradio.Dropdown(visible = has_deep_swapper), gradio.Slider(visible = has_deep_swapper and has_morph_input())
|
||||
|
||||
|
||||
def update_deep_swapper_model(deep_swapper_model : DeepSwapperModel) -> Tuple[gradio.Dropdown, gradio.Slider]:
|
||||
deep_swapper_module = load_processor_module('deep_swapper')
|
||||
deep_swapper_module.clear_inference_pool()
|
||||
state_manager.set_item('deep_swapper_model', deep_swapper_model)
|
||||
|
||||
if deep_swapper_module.pre_check():
|
||||
return gradio.Dropdown(value = state_manager.get_item('deep_swapper_model')), gradio.Slider(visible = has_morph_input())
|
||||
return gradio.Dropdown(), gradio.Slider()
|
||||
|
||||
|
||||
def update_deep_swapper_morph(deep_swapper_morph : int) -> None:
|
||||
state_manager.set_item('deep_swapper_morph', deep_swapper_morph)
|
48
facefusion/uis/components/download.py
Normal file
48
facefusion/uis/components/download.py
Normal file
@ -0,0 +1,48 @@
|
||||
from typing import List, Optional
|
||||
|
||||
import gradio
|
||||
|
||||
import facefusion.choices
|
||||
from facefusion import content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, state_manager, voice_extractor, wording
|
||||
from facefusion.filesystem import list_directory
|
||||
from facefusion.processors.core import get_processors_modules
|
||||
from facefusion.typing import DownloadProvider
|
||||
|
||||
DOWNLOAD_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
|
||||
|
||||
def render() -> None:
|
||||
global DOWNLOAD_PROVIDERS_CHECKBOX_GROUP
|
||||
|
||||
DOWNLOAD_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
|
||||
label = wording.get('uis.download_providers_checkbox_group'),
|
||||
choices = facefusion.choices.download_providers,
|
||||
value = state_manager.get_item('download_providers')
|
||||
)
|
||||
|
||||
|
||||
def listen() -> None:
|
||||
DOWNLOAD_PROVIDERS_CHECKBOX_GROUP.change(update_download_providers, inputs = DOWNLOAD_PROVIDERS_CHECKBOX_GROUP, outputs = DOWNLOAD_PROVIDERS_CHECKBOX_GROUP)
|
||||
|
||||
|
||||
def update_download_providers(download_providers : List[DownloadProvider]) -> gradio.CheckboxGroup:
|
||||
common_modules =\
|
||||
[
|
||||
content_analyser,
|
||||
face_classifier,
|
||||
face_detector,
|
||||
face_landmarker,
|
||||
face_recognizer,
|
||||
face_masker,
|
||||
voice_extractor
|
||||
]
|
||||
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
|
||||
processor_modules = get_processors_modules(available_processors)
|
||||
|
||||
for module in common_modules + processor_modules:
|
||||
if hasattr(module, 'create_static_model_set'):
|
||||
module.create_static_model_set.cache_clear()
|
||||
|
||||
download_providers = download_providers or facefusion.choices.download_providers
|
||||
state_manager.set_item('download_providers', download_providers)
|
||||
return gradio.CheckboxGroup(value = state_manager.get_item('download_providers'))
|
@ -3,9 +3,10 @@ from typing import List, Optional
|
||||
import gradio
|
||||
|
||||
from facefusion import content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, state_manager, voice_extractor, wording
|
||||
from facefusion.execution import get_execution_provider_choices
|
||||
from facefusion.processors.core import clear_processors_modules
|
||||
from facefusion.typing import ExecutionProviderKey
|
||||
from facefusion.execution import get_available_execution_providers
|
||||
from facefusion.filesystem import list_directory
|
||||
from facefusion.processors.core import get_processors_modules
|
||||
from facefusion.typing import ExecutionProvider
|
||||
|
||||
EXECUTION_PROVIDERS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
|
||||
@ -15,7 +16,7 @@ def render() -> None:
|
||||
|
||||
EXECUTION_PROVIDERS_CHECKBOX_GROUP = gradio.CheckboxGroup(
|
||||
label = wording.get('uis.execution_providers_checkbox_group'),
|
||||
choices = get_execution_provider_choices(),
|
||||
choices = get_available_execution_providers(),
|
||||
value = state_manager.get_item('execution_providers')
|
||||
)
|
||||
|
||||
@ -24,15 +25,24 @@ def listen() -> None:
|
||||
EXECUTION_PROVIDERS_CHECKBOX_GROUP.change(update_execution_providers, inputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP, outputs = EXECUTION_PROVIDERS_CHECKBOX_GROUP)
|
||||
|
||||
|
||||
def update_execution_providers(execution_providers : List[ExecutionProviderKey]) -> gradio.CheckboxGroup:
|
||||
content_analyser.clear_inference_pool()
|
||||
face_classifier.clear_inference_pool()
|
||||
face_detector.clear_inference_pool()
|
||||
face_landmarker.clear_inference_pool()
|
||||
face_masker.clear_inference_pool()
|
||||
face_recognizer.clear_inference_pool()
|
||||
voice_extractor.clear_inference_pool()
|
||||
clear_processors_modules(state_manager.get_item('processors'))
|
||||
execution_providers = execution_providers or get_execution_provider_choices()
|
||||
def update_execution_providers(execution_providers : List[ExecutionProvider]) -> gradio.CheckboxGroup:
|
||||
common_modules =\
|
||||
[
|
||||
content_analyser,
|
||||
face_classifier,
|
||||
face_detector,
|
||||
face_landmarker,
|
||||
face_masker,
|
||||
face_recognizer,
|
||||
voice_extractor
|
||||
]
|
||||
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
|
||||
processor_modules = get_processors_modules(available_processors)
|
||||
|
||||
for module in common_modules + processor_modules:
|
||||
if hasattr(module, 'clear_inference_pool'):
|
||||
module.clear_inference_pool()
|
||||
|
||||
execution_providers = execution_providers or get_available_execution_providers()
|
||||
state_manager.set_item('execution_providers', execution_providers)
|
||||
return gradio.CheckboxGroup(value = state_manager.get_item('execution_providers'))
|
||||
|
@ -17,11 +17,12 @@ def render() -> None:
|
||||
global EXPRESSION_RESTORER_MODEL_DROPDOWN
|
||||
global EXPRESSION_RESTORER_FACTOR_SLIDER
|
||||
|
||||
has_expression_restorer = 'expression_restorer' in state_manager.get_item('processors')
|
||||
EXPRESSION_RESTORER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.expression_restorer_model_dropdown'),
|
||||
choices = processors_choices.expression_restorer_models,
|
||||
value = state_manager.get_item('expression_restorer_model'),
|
||||
visible = 'expression_restorer' in state_manager.get_item('processors')
|
||||
visible = has_expression_restorer
|
||||
)
|
||||
EXPRESSION_RESTORER_FACTOR_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.expression_restorer_factor_slider'),
|
||||
@ -29,7 +30,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.expression_restorer_factor_range),
|
||||
minimum = processors_choices.expression_restorer_factor_range[0],
|
||||
maximum = processors_choices.expression_restorer_factor_range[-1],
|
||||
visible = 'expression_restorer' in state_manager.get_item('processors'),
|
||||
visible = has_expression_restorer
|
||||
)
|
||||
register_ui_component('expression_restorer_model_dropdown', EXPRESSION_RESTORER_MODEL_DROPDOWN)
|
||||
register_ui_component('expression_restorer_factor_slider', EXPRESSION_RESTORER_FACTOR_SLIDER)
|
||||
|
@ -13,11 +13,12 @@ FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
def render() -> None:
|
||||
global FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP
|
||||
|
||||
has_face_debugger = 'face_debugger' in state_manager.get_item('processors')
|
||||
FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP = gradio.CheckboxGroup(
|
||||
label = wording.get('uis.face_debugger_items_checkbox_group'),
|
||||
choices = processors_choices.face_debugger_items,
|
||||
value = state_manager.get_item('face_debugger_items'),
|
||||
visible = 'face_debugger' in state_manager.get_item('processors')
|
||||
visible = has_face_debugger
|
||||
)
|
||||
register_ui_component('face_debugger_items_checkbox_group', FACE_DEBUGGER_ITEMS_CHECKBOX_GROUP)
|
||||
|
||||
|
@ -3,7 +3,7 @@ from typing import Optional, Sequence, Tuple
|
||||
import gradio
|
||||
|
||||
import facefusion.choices
|
||||
from facefusion import choices, face_detector, state_manager, wording
|
||||
from facefusion import face_detector, state_manager, wording
|
||||
from facefusion.common_helper import calc_float_step, get_last
|
||||
from facefusion.typing import Angle, FaceDetectorModel, Score
|
||||
from facefusion.uis.core import register_ui_component
|
||||
@ -31,7 +31,7 @@ def render() -> None:
|
||||
with gradio.Row():
|
||||
FACE_DETECTOR_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.face_detector_model_dropdown'),
|
||||
choices = facefusion.choices.face_detector_set.keys(),
|
||||
choices = facefusion.choices.face_detector_models,
|
||||
value = state_manager.get_item('face_detector_model')
|
||||
)
|
||||
FACE_DETECTOR_SIZE_DROPDOWN = gradio.Dropdown(**face_detector_size_dropdown_options)
|
||||
@ -65,7 +65,7 @@ def update_face_detector_model(face_detector_model : FaceDetectorModel) -> Tuple
|
||||
state_manager.set_item('face_detector_model', face_detector_model)
|
||||
|
||||
if face_detector.pre_check():
|
||||
face_detector_size_choices = choices.face_detector_set.get(state_manager.get_item('face_detector_model'))
|
||||
face_detector_size_choices = facefusion.choices.face_detector_set.get(state_manager.get_item('face_detector_model'))
|
||||
state_manager.set_item('face_detector_size', get_last(face_detector_size_choices))
|
||||
return gradio.Dropdown(value = state_manager.get_item('face_detector_model')), gradio.Dropdown(value = state_manager.get_item('face_detector_size'), choices = face_detector_size_choices)
|
||||
return gradio.Dropdown(), gradio.Dropdown()
|
||||
|
@ -43,11 +43,12 @@ def render() -> None:
|
||||
global FACE_EDITOR_HEAD_YAW_SLIDER
|
||||
global FACE_EDITOR_HEAD_ROLL_SLIDER
|
||||
|
||||
has_face_editor = 'face_editor' in state_manager.get_item('processors')
|
||||
FACE_EDITOR_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.face_editor_model_dropdown'),
|
||||
choices = processors_choices.face_editor_models,
|
||||
value = state_manager.get_item('face_editor_model'),
|
||||
visible = 'face_editor' in state_manager.get_item('processors')
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_EYEBROW_DIRECTION_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_eyebrow_direction_slider'),
|
||||
@ -55,7 +56,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_eyebrow_direction_range),
|
||||
minimum = processors_choices.face_editor_eyebrow_direction_range[0],
|
||||
maximum = processors_choices.face_editor_eyebrow_direction_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_EYE_GAZE_HORIZONTAL_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_eye_gaze_horizontal_slider'),
|
||||
@ -63,7 +64,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_eye_gaze_horizontal_range),
|
||||
minimum = processors_choices.face_editor_eye_gaze_horizontal_range[0],
|
||||
maximum = processors_choices.face_editor_eye_gaze_horizontal_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_EYE_GAZE_VERTICAL_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_eye_gaze_vertical_slider'),
|
||||
@ -71,7 +72,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_eye_gaze_vertical_range),
|
||||
minimum = processors_choices.face_editor_eye_gaze_vertical_range[0],
|
||||
maximum = processors_choices.face_editor_eye_gaze_vertical_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_EYE_OPEN_RATIO_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_eye_open_ratio_slider'),
|
||||
@ -79,7 +80,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_eye_open_ratio_range),
|
||||
minimum = processors_choices.face_editor_eye_open_ratio_range[0],
|
||||
maximum = processors_choices.face_editor_eye_open_ratio_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_LIP_OPEN_RATIO_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_lip_open_ratio_slider'),
|
||||
@ -87,7 +88,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_lip_open_ratio_range),
|
||||
minimum = processors_choices.face_editor_lip_open_ratio_range[0],
|
||||
maximum = processors_choices.face_editor_lip_open_ratio_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_MOUTH_GRIM_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_mouth_grim_slider'),
|
||||
@ -95,7 +96,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_mouth_grim_range),
|
||||
minimum = processors_choices.face_editor_mouth_grim_range[0],
|
||||
maximum = processors_choices.face_editor_mouth_grim_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_MOUTH_POUT_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_mouth_pout_slider'),
|
||||
@ -103,7 +104,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_mouth_pout_range),
|
||||
minimum = processors_choices.face_editor_mouth_pout_range[0],
|
||||
maximum = processors_choices.face_editor_mouth_pout_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_MOUTH_PURSE_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_mouth_purse_slider'),
|
||||
@ -111,7 +112,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_mouth_purse_range),
|
||||
minimum = processors_choices.face_editor_mouth_purse_range[0],
|
||||
maximum = processors_choices.face_editor_mouth_purse_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_MOUTH_SMILE_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_mouth_smile_slider'),
|
||||
@ -119,7 +120,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_mouth_smile_range),
|
||||
minimum = processors_choices.face_editor_mouth_smile_range[0],
|
||||
maximum = processors_choices.face_editor_mouth_smile_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_MOUTH_POSITION_HORIZONTAL_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_mouth_position_horizontal_slider'),
|
||||
@ -127,7 +128,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_mouth_position_horizontal_range),
|
||||
minimum = processors_choices.face_editor_mouth_position_horizontal_range[0],
|
||||
maximum = processors_choices.face_editor_mouth_position_horizontal_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_MOUTH_POSITION_VERTICAL_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_mouth_position_vertical_slider'),
|
||||
@ -135,7 +136,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_mouth_position_vertical_range),
|
||||
minimum = processors_choices.face_editor_mouth_position_vertical_range[0],
|
||||
maximum = processors_choices.face_editor_mouth_position_vertical_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_HEAD_PITCH_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_head_pitch_slider'),
|
||||
@ -143,7 +144,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_head_pitch_range),
|
||||
minimum = processors_choices.face_editor_head_pitch_range[0],
|
||||
maximum = processors_choices.face_editor_head_pitch_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_HEAD_YAW_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_head_yaw_slider'),
|
||||
@ -151,7 +152,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_head_yaw_range),
|
||||
minimum = processors_choices.face_editor_head_yaw_range[0],
|
||||
maximum = processors_choices.face_editor_head_yaw_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
FACE_EDITOR_HEAD_ROLL_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_editor_head_roll_slider'),
|
||||
@ -159,7 +160,7 @@ def render() -> None:
|
||||
step = calc_float_step(processors_choices.face_editor_head_roll_range),
|
||||
minimum = processors_choices.face_editor_head_roll_range[0],
|
||||
maximum = processors_choices.face_editor_head_roll_range[-1],
|
||||
visible = 'face_editor' in state_manager.get_item('processors'),
|
||||
visible = has_face_editor
|
||||
)
|
||||
register_ui_component('face_editor_model_dropdown', FACE_EDITOR_MODEL_DROPDOWN)
|
||||
register_ui_component('face_editor_eyebrow_direction_slider', FACE_EDITOR_EYEBROW_DIRECTION_SLIDER)
|
||||
|
@ -3,25 +3,29 @@ from typing import List, Optional, Tuple
|
||||
import gradio
|
||||
|
||||
from facefusion import state_manager, wording
|
||||
from facefusion.common_helper import calc_int_step
|
||||
from facefusion.common_helper import calc_float_step, calc_int_step
|
||||
from facefusion.processors import choices as processors_choices
|
||||
from facefusion.processors.core import load_processor_module
|
||||
from facefusion.processors.modules.face_enhancer import has_weight_input
|
||||
from facefusion.processors.typing import FaceEnhancerModel
|
||||
from facefusion.uis.core import get_ui_component, register_ui_component
|
||||
|
||||
FACE_ENHANCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
FACE_ENHANCER_BLEND_SLIDER : Optional[gradio.Slider] = None
|
||||
FACE_ENHANCER_WEIGHT_SLIDER : Optional[gradio.Slider] = None
|
||||
|
||||
|
||||
def render() -> None:
|
||||
global FACE_ENHANCER_MODEL_DROPDOWN
|
||||
global FACE_ENHANCER_BLEND_SLIDER
|
||||
global FACE_ENHANCER_WEIGHT_SLIDER
|
||||
|
||||
has_face_enhancer = 'face_enhancer' in state_manager.get_item('processors')
|
||||
FACE_ENHANCER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.face_enhancer_model_dropdown'),
|
||||
choices = processors_choices.face_enhancer_models,
|
||||
value = state_manager.get_item('face_enhancer_model'),
|
||||
visible = 'face_enhancer' in state_manager.get_item('processors')
|
||||
visible = has_face_enhancer
|
||||
)
|
||||
FACE_ENHANCER_BLEND_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_enhancer_blend_slider'),
|
||||
@ -29,35 +33,50 @@ def render() -> None:
|
||||
step = calc_int_step(processors_choices.face_enhancer_blend_range),
|
||||
minimum = processors_choices.face_enhancer_blend_range[0],
|
||||
maximum = processors_choices.face_enhancer_blend_range[-1],
|
||||
visible = 'face_enhancer' in state_manager.get_item('processors')
|
||||
visible = has_face_enhancer
|
||||
)
|
||||
FACE_ENHANCER_WEIGHT_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.face_enhancer_weight_slider'),
|
||||
value = state_manager.get_item('face_enhancer_weight'),
|
||||
step = calc_float_step(processors_choices.face_enhancer_weight_range),
|
||||
minimum = processors_choices.face_enhancer_weight_range[0],
|
||||
maximum = processors_choices.face_enhancer_weight_range[-1],
|
||||
visible = has_face_enhancer and has_weight_input()
|
||||
)
|
||||
register_ui_component('face_enhancer_model_dropdown', FACE_ENHANCER_MODEL_DROPDOWN)
|
||||
register_ui_component('face_enhancer_blend_slider', FACE_ENHANCER_BLEND_SLIDER)
|
||||
register_ui_component('face_enhancer_weight_slider', FACE_ENHANCER_WEIGHT_SLIDER)
|
||||
|
||||
|
||||
def listen() -> None:
|
||||
FACE_ENHANCER_MODEL_DROPDOWN.change(update_face_enhancer_model, inputs = FACE_ENHANCER_MODEL_DROPDOWN, outputs = FACE_ENHANCER_MODEL_DROPDOWN)
|
||||
FACE_ENHANCER_MODEL_DROPDOWN.change(update_face_enhancer_model, inputs = FACE_ENHANCER_MODEL_DROPDOWN, outputs = [ FACE_ENHANCER_MODEL_DROPDOWN, FACE_ENHANCER_WEIGHT_SLIDER ])
|
||||
FACE_ENHANCER_BLEND_SLIDER.release(update_face_enhancer_blend, inputs = FACE_ENHANCER_BLEND_SLIDER)
|
||||
FACE_ENHANCER_WEIGHT_SLIDER.release(update_face_enhancer_weight, inputs = FACE_ENHANCER_WEIGHT_SLIDER)
|
||||
|
||||
processors_checkbox_group = get_ui_component('processors_checkbox_group')
|
||||
if processors_checkbox_group:
|
||||
processors_checkbox_group.change(remote_update, inputs = processors_checkbox_group, outputs = [ FACE_ENHANCER_MODEL_DROPDOWN, FACE_ENHANCER_BLEND_SLIDER ])
|
||||
processors_checkbox_group.change(remote_update, inputs = processors_checkbox_group, outputs = [ FACE_ENHANCER_MODEL_DROPDOWN, FACE_ENHANCER_BLEND_SLIDER, FACE_ENHANCER_WEIGHT_SLIDER ])
|
||||
|
||||
|
||||
def remote_update(processors : List[str]) -> Tuple[gradio.Dropdown, gradio.Slider]:
|
||||
def remote_update(processors : List[str]) -> Tuple[gradio.Dropdown, gradio.Slider, gradio.Slider]:
|
||||
has_face_enhancer = 'face_enhancer' in processors
|
||||
return gradio.Dropdown(visible = has_face_enhancer), gradio.Slider(visible = has_face_enhancer)
|
||||
return gradio.Dropdown(visible = has_face_enhancer), gradio.Slider(visible = has_face_enhancer), gradio.Slider(visible = has_face_enhancer and has_weight_input())
|
||||
|
||||
|
||||
def update_face_enhancer_model(face_enhancer_model : FaceEnhancerModel) -> gradio.Dropdown:
|
||||
def update_face_enhancer_model(face_enhancer_model : FaceEnhancerModel) -> Tuple[gradio.Dropdown, gradio.Slider]:
|
||||
face_enhancer_module = load_processor_module('face_enhancer')
|
||||
face_enhancer_module.clear_inference_pool()
|
||||
state_manager.set_item('face_enhancer_model', face_enhancer_model)
|
||||
|
||||
if face_enhancer_module.pre_check():
|
||||
return gradio.Dropdown(value = state_manager.get_item('face_enhancer_model'))
|
||||
return gradio.Dropdown()
|
||||
return gradio.Dropdown(value = state_manager.get_item('face_enhancer_model')), gradio.Slider(visible = has_weight_input())
|
||||
return gradio.Dropdown(), gradio.Slider()
|
||||
|
||||
|
||||
def update_face_enhancer_blend(face_enhancer_blend : float) -> None:
|
||||
state_manager.set_item('face_enhancer_blend', int(face_enhancer_blend))
|
||||
|
||||
|
||||
def update_face_enhancer_weight(face_enhancer_weight : float) -> None:
|
||||
state_manager.set_item('face_enhancer_weight', face_enhancer_weight)
|
||||
|
||||
|
@ -3,11 +3,13 @@ from typing import List, Optional, Tuple
|
||||
import gradio
|
||||
|
||||
import facefusion.choices
|
||||
from facefusion import state_manager, wording
|
||||
from facefusion import face_masker, state_manager, wording
|
||||
from facefusion.common_helper import calc_float_step, calc_int_step
|
||||
from facefusion.typing import FaceMaskRegion, FaceMaskType
|
||||
from facefusion.typing import FaceMaskRegion, FaceMaskType, FaceOccluderModel, FaceParserModel
|
||||
from facefusion.uis.core import register_ui_component
|
||||
|
||||
FACE_OCCLUDER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
FACE_PARSER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
FACE_MASK_TYPES_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
FACE_MASK_REGIONS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
FACE_MASK_BLUR_SLIDER : Optional[gradio.Slider] = None
|
||||
@ -18,6 +20,8 @@ FACE_MASK_PADDING_LEFT_SLIDER : Optional[gradio.Slider] = None
|
||||
|
||||
|
||||
def render() -> None:
|
||||
global FACE_OCCLUDER_MODEL_DROPDOWN
|
||||
global FACE_PARSER_MODEL_DROPDOWN
|
||||
global FACE_MASK_TYPES_CHECKBOX_GROUP
|
||||
global FACE_MASK_REGIONS_CHECKBOX_GROUP
|
||||
global FACE_MASK_BLUR_SLIDER
|
||||
@ -28,6 +32,17 @@ def render() -> None:
|
||||
|
||||
has_box_mask = 'box' in state_manager.get_item('face_mask_types')
|
||||
has_region_mask = 'region' in state_manager.get_item('face_mask_types')
|
||||
with gradio.Row():
|
||||
FACE_OCCLUDER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.face_occluder_model_dropdown'),
|
||||
choices = facefusion.choices.face_occluder_models,
|
||||
value = state_manager.get_item('face_occluder_model')
|
||||
)
|
||||
FACE_PARSER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.face_parser_model_dropdown'),
|
||||
choices = facefusion.choices.face_parser_models,
|
||||
value = state_manager.get_item('face_parser_model')
|
||||
)
|
||||
FACE_MASK_TYPES_CHECKBOX_GROUP = gradio.CheckboxGroup(
|
||||
label = wording.get('uis.face_mask_types_checkbox_group'),
|
||||
choices = facefusion.choices.face_mask_types,
|
||||
@ -82,6 +97,8 @@ def render() -> None:
|
||||
value = state_manager.get_item('face_mask_padding')[3],
|
||||
visible = has_box_mask
|
||||
)
|
||||
register_ui_component('face_occluder_model_dropdown', FACE_OCCLUDER_MODEL_DROPDOWN)
|
||||
register_ui_component('face_parser_model_dropdown', FACE_PARSER_MODEL_DROPDOWN)
|
||||
register_ui_component('face_mask_types_checkbox_group', FACE_MASK_TYPES_CHECKBOX_GROUP)
|
||||
register_ui_component('face_mask_regions_checkbox_group', FACE_MASK_REGIONS_CHECKBOX_GROUP)
|
||||
register_ui_component('face_mask_blur_slider', FACE_MASK_BLUR_SLIDER)
|
||||
@ -92,6 +109,8 @@ def render() -> None:
|
||||
|
||||
|
||||
def listen() -> None:
|
||||
FACE_OCCLUDER_MODEL_DROPDOWN.change(update_face_occluder_model, inputs = FACE_OCCLUDER_MODEL_DROPDOWN)
|
||||
FACE_PARSER_MODEL_DROPDOWN.change(update_face_parser_model, inputs = FACE_PARSER_MODEL_DROPDOWN)
|
||||
FACE_MASK_TYPES_CHECKBOX_GROUP.change(update_face_mask_types, inputs = FACE_MASK_TYPES_CHECKBOX_GROUP, outputs = [ FACE_MASK_TYPES_CHECKBOX_GROUP, FACE_MASK_REGIONS_CHECKBOX_GROUP, FACE_MASK_BLUR_SLIDER, FACE_MASK_PADDING_TOP_SLIDER, FACE_MASK_PADDING_RIGHT_SLIDER, FACE_MASK_PADDING_BOTTOM_SLIDER, FACE_MASK_PADDING_LEFT_SLIDER ])
|
||||
FACE_MASK_REGIONS_CHECKBOX_GROUP.change(update_face_mask_regions, inputs = FACE_MASK_REGIONS_CHECKBOX_GROUP, outputs = FACE_MASK_REGIONS_CHECKBOX_GROUP)
|
||||
FACE_MASK_BLUR_SLIDER.release(update_face_mask_blur, inputs = FACE_MASK_BLUR_SLIDER)
|
||||
@ -100,6 +119,24 @@ def listen() -> None:
|
||||
face_mask_padding_slider.release(update_face_mask_padding, inputs = face_mask_padding_sliders)
|
||||
|
||||
|
||||
def update_face_occluder_model(face_occluder_model : FaceOccluderModel) -> gradio.Dropdown:
|
||||
face_masker.clear_inference_pool()
|
||||
state_manager.set_item('face_occluder_model', face_occluder_model)
|
||||
|
||||
if face_masker.pre_check():
|
||||
return gradio.Dropdown(value = state_manager.get_item('face_occluder_model'))
|
||||
return gradio.Dropdown()
|
||||
|
||||
|
||||
def update_face_parser_model(face_parser_model : FaceParserModel) -> gradio.Dropdown:
|
||||
face_masker.clear_inference_pool()
|
||||
state_manager.set_item('face_parser_model', face_parser_model)
|
||||
|
||||
if face_masker.pre_check():
|
||||
return gradio.Dropdown(value = state_manager.get_item('face_parser_model'))
|
||||
return gradio.Dropdown()
|
||||
|
||||
|
||||
def update_face_mask_types(face_mask_types : List[FaceMaskType]) -> Tuple[gradio.CheckboxGroup, gradio.CheckboxGroup, gradio.Slider, gradio.Slider, gradio.Slider, gradio.Slider, gradio.Slider]:
|
||||
face_mask_types = face_mask_types or facefusion.choices.face_mask_types
|
||||
state_manager.set_item('face_mask_types', face_mask_types)
|
||||
|
@ -17,17 +17,18 @@ def render() -> None:
|
||||
global FACE_SWAPPER_MODEL_DROPDOWN
|
||||
global FACE_SWAPPER_PIXEL_BOOST_DROPDOWN
|
||||
|
||||
has_face_swapper = 'face_swapper' in state_manager.get_item('processors')
|
||||
FACE_SWAPPER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.face_swapper_model_dropdown'),
|
||||
choices = processors_choices.face_swapper_set.keys(),
|
||||
choices = processors_choices.face_swapper_models,
|
||||
value = state_manager.get_item('face_swapper_model'),
|
||||
visible = 'face_swapper' in state_manager.get_item('processors')
|
||||
visible = has_face_swapper
|
||||
)
|
||||
FACE_SWAPPER_PIXEL_BOOST_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.face_swapper_pixel_boost_dropdown'),
|
||||
choices = processors_choices.face_swapper_set.get(state_manager.get_item('face_swapper_model')),
|
||||
value = state_manager.get_item('face_swapper_pixel_boost'),
|
||||
visible = 'face_swapper' in state_manager.get_item('processors')
|
||||
visible = has_face_swapper
|
||||
)
|
||||
register_ui_component('face_swapper_model_dropdown', FACE_SWAPPER_MODEL_DROPDOWN)
|
||||
register_ui_component('face_swapper_pixel_boost_dropdown', FACE_SWAPPER_PIXEL_BOOST_DROPDOWN)
|
||||
|
@ -19,17 +19,18 @@ def render() -> None:
|
||||
global FRAME_COLORIZER_SIZE_DROPDOWN
|
||||
global FRAME_COLORIZER_BLEND_SLIDER
|
||||
|
||||
has_frame_colorizer = 'frame_colorizer' in state_manager.get_item('processors')
|
||||
FRAME_COLORIZER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.frame_colorizer_model_dropdown'),
|
||||
choices = processors_choices.frame_colorizer_models,
|
||||
value = state_manager.get_item('frame_colorizer_model'),
|
||||
visible = 'frame_colorizer' in state_manager.get_item('processors')
|
||||
visible = has_frame_colorizer
|
||||
)
|
||||
FRAME_COLORIZER_SIZE_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.frame_colorizer_size_dropdown'),
|
||||
choices = processors_choices.frame_colorizer_sizes,
|
||||
value = state_manager.get_item('frame_colorizer_size'),
|
||||
visible = 'frame_colorizer' in state_manager.get_item('processors')
|
||||
visible = has_frame_colorizer
|
||||
)
|
||||
FRAME_COLORIZER_BLEND_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.frame_colorizer_blend_slider'),
|
||||
@ -37,7 +38,7 @@ def render() -> None:
|
||||
step = calc_int_step(processors_choices.frame_colorizer_blend_range),
|
||||
minimum = processors_choices.frame_colorizer_blend_range[0],
|
||||
maximum = processors_choices.frame_colorizer_blend_range[-1],
|
||||
visible = 'frame_colorizer' in state_manager.get_item('processors')
|
||||
visible = has_frame_colorizer
|
||||
)
|
||||
register_ui_component('frame_colorizer_model_dropdown', FRAME_COLORIZER_MODEL_DROPDOWN)
|
||||
register_ui_component('frame_colorizer_size_dropdown', FRAME_COLORIZER_SIZE_DROPDOWN)
|
||||
|
@ -17,11 +17,12 @@ def render() -> None:
|
||||
global FRAME_ENHANCER_MODEL_DROPDOWN
|
||||
global FRAME_ENHANCER_BLEND_SLIDER
|
||||
|
||||
has_frame_enhancer = 'frame_enhancer' in state_manager.get_item('processors')
|
||||
FRAME_ENHANCER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.frame_enhancer_model_dropdown'),
|
||||
choices = processors_choices.frame_enhancer_models,
|
||||
value = state_manager.get_item('frame_enhancer_model'),
|
||||
visible = 'frame_enhancer' in state_manager.get_item('processors')
|
||||
visible = has_frame_enhancer
|
||||
)
|
||||
FRAME_ENHANCER_BLEND_SLIDER = gradio.Slider(
|
||||
label = wording.get('uis.frame_enhancer_blend_slider'),
|
||||
@ -29,7 +30,7 @@ def render() -> None:
|
||||
step = calc_int_step(processors_choices.frame_enhancer_blend_range),
|
||||
minimum = processors_choices.frame_enhancer_blend_range[0],
|
||||
maximum = processors_choices.frame_enhancer_blend_range[-1],
|
||||
visible = 'frame_enhancer' in state_manager.get_item('processors')
|
||||
visible = has_frame_enhancer
|
||||
)
|
||||
register_ui_component('frame_enhancer_model_dropdown', FRAME_ENHANCER_MODEL_DROPDOWN)
|
||||
register_ui_component('frame_enhancer_blend_slider', FRAME_ENHANCER_BLEND_SLIDER)
|
||||
|
@ -14,11 +14,12 @@ LIP_SYNCER_MODEL_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
def render() -> None:
|
||||
global LIP_SYNCER_MODEL_DROPDOWN
|
||||
|
||||
has_lip_syncer = 'lip_syncer' in state_manager.get_item('processors')
|
||||
LIP_SYNCER_MODEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.lip_syncer_model_dropdown'),
|
||||
choices = processors_choices.lip_syncer_models,
|
||||
value = state_manager.get_item('lip_syncer_model'),
|
||||
visible = 'lip_syncer' in state_manager.get_item('processors')
|
||||
visible = has_lip_syncer
|
||||
)
|
||||
register_ui_component('lip_syncer_model_dropdown', LIP_SYNCER_MODEL_DROPDOWN)
|
||||
|
||||
|
@ -11,6 +11,7 @@ from facefusion.common_helper import get_first
|
||||
from facefusion.content_analyser import analyse_frame
|
||||
from facefusion.core import conditional_append_reference_faces
|
||||
from facefusion.face_analyser import get_average_face, get_many_faces
|
||||
from facefusion.face_selector import sort_faces_by_order
|
||||
from facefusion.face_store import clear_reference_faces, clear_static_faces, get_reference_faces
|
||||
from facefusion.filesystem import filter_audio_paths, is_image, is_video
|
||||
from facefusion.processors.core import get_processors_modules
|
||||
@ -74,7 +75,7 @@ def render() -> None:
|
||||
|
||||
def listen() -> None:
|
||||
PREVIEW_FRAME_SLIDER.release(update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE, show_progress = 'hidden')
|
||||
PREVIEW_FRAME_SLIDER.change(slide_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE, show_progress = 'hidden')
|
||||
PREVIEW_FRAME_SLIDER.change(slide_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE, show_progress = 'hidden', trigger_mode = 'once')
|
||||
|
||||
reference_face_position_gallery = get_ui_component('reference_face_position_gallery')
|
||||
if reference_face_position_gallery:
|
||||
@ -110,6 +111,7 @@ def listen() -> None:
|
||||
for ui_component in get_ui_components(
|
||||
[
|
||||
'age_modifier_direction_slider',
|
||||
'deep_swapper_morph_slider',
|
||||
'expression_restorer_factor_slider',
|
||||
'face_editor_eyebrow_direction_slider',
|
||||
'face_editor_eye_gaze_horizontal_slider',
|
||||
@ -126,6 +128,7 @@ def listen() -> None:
|
||||
'face_editor_head_yaw_slider',
|
||||
'face_editor_head_roll_slider',
|
||||
'face_enhancer_blend_slider',
|
||||
'face_enhancer_weight_slider',
|
||||
'frame_colorizer_blend_slider',
|
||||
'frame_enhancer_blend_slider',
|
||||
'reference_face_distance_slider',
|
||||
@ -142,6 +145,7 @@ def listen() -> None:
|
||||
for ui_component in get_ui_components(
|
||||
[
|
||||
'age_modifier_model_dropdown',
|
||||
'deep_swapper_model_dropdown',
|
||||
'expression_restorer_model_dropdown',
|
||||
'processors_checkbox_group',
|
||||
'face_editor_model_dropdown',
|
||||
@ -158,7 +162,9 @@ def listen() -> None:
|
||||
'face_detector_model_dropdown',
|
||||
'face_detector_size_dropdown',
|
||||
'face_detector_angles_checkbox_group',
|
||||
'face_landmarker_model_dropdown'
|
||||
'face_landmarker_model_dropdown',
|
||||
'face_occluder_model_dropdown',
|
||||
'face_parser_model_dropdown'
|
||||
]):
|
||||
ui_component.change(clear_and_update_preview_image, inputs = PREVIEW_FRAME_SLIDER, outputs = PREVIEW_IMAGE)
|
||||
|
||||
@ -190,7 +196,13 @@ def update_preview_image(frame_number : int = 0) -> gradio.Image:
|
||||
conditional_append_reference_faces()
|
||||
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
|
||||
source_frames = read_static_images(state_manager.get_item('source_paths'))
|
||||
source_faces = get_many_faces(source_frames)
|
||||
source_faces = []
|
||||
|
||||
for source_frame in source_frames:
|
||||
temp_faces = get_many_faces([ source_frame ])
|
||||
temp_faces = sort_faces_by_order(temp_faces, 'large-small')
|
||||
if temp_faces:
|
||||
source_faces.append(get_first(temp_faces))
|
||||
source_face = get_average_face(source_faces)
|
||||
source_audio_path = get_first(filter_audio_paths(state_manager.get_item('source_paths')))
|
||||
source_audio_frame = create_empty_audio_frame()
|
||||
|
@ -4,7 +4,7 @@ import gradio
|
||||
|
||||
from facefusion import state_manager, wording
|
||||
from facefusion.filesystem import list_directory
|
||||
from facefusion.processors.core import clear_processors_modules, get_processors_modules
|
||||
from facefusion.processors.core import get_processors_modules
|
||||
from facefusion.uis.core import register_ui_component
|
||||
|
||||
PROCESSORS_CHECKBOX_GROUP : Optional[gradio.CheckboxGroup] = None
|
||||
@ -26,15 +26,18 @@ def listen() -> None:
|
||||
|
||||
|
||||
def update_processors(processors : List[str]) -> gradio.CheckboxGroup:
|
||||
clear_processors_modules(state_manager.get_item('processors'))
|
||||
state_manager.set_item('processors', processors)
|
||||
|
||||
for processor_module in get_processors_modules(state_manager.get_item('processors')):
|
||||
if hasattr(processor_module, 'clear_inference_pool'):
|
||||
processor_module.clear_inference_pool()
|
||||
|
||||
for processor_module in get_processors_modules(processors):
|
||||
if not processor_module.pre_check():
|
||||
return gradio.CheckboxGroup()
|
||||
|
||||
state_manager.set_item('processors', processors)
|
||||
return gradio.CheckboxGroup(value = state_manager.get_item('processors'), choices = sort_processors(state_manager.get_item('processors')))
|
||||
|
||||
|
||||
def sort_processors(processors : List[str]) -> List[str]:
|
||||
available_processors = list_directory('facefusion/processors/modules')
|
||||
available_processors = [ file.get('name') for file in list_directory('facefusion/processors/modules') ]
|
||||
return sorted(available_processors, key = lambda processor : processors.index(processor) if processor in processors else len(processors))
|
||||
|
@ -7,8 +7,8 @@ from typing import Optional
|
||||
import gradio
|
||||
from tqdm import tqdm
|
||||
|
||||
import facefusion.choices
|
||||
from facefusion import logger, state_manager, wording
|
||||
from facefusion.choices import log_level_set
|
||||
from facefusion.typing import LogLevel
|
||||
|
||||
LOG_LEVEL_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
@ -24,7 +24,7 @@ def render() -> None:
|
||||
|
||||
LOG_LEVEL_DROPDOWN = gradio.Dropdown(
|
||||
label = wording.get('uis.log_level_dropdown'),
|
||||
choices = log_level_set.keys(),
|
||||
choices = facefusion.choices.log_levels,
|
||||
value = state_manager.get_item('log_level')
|
||||
)
|
||||
TERMINAL_TEXTBOX = gradio.Textbox(
|
||||
|
@ -2,7 +2,7 @@ import os
|
||||
import subprocess
|
||||
from collections import deque
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Deque, Generator, Optional
|
||||
from typing import Deque, Generator, List, Optional
|
||||
|
||||
import cv2
|
||||
import gradio
|
||||
@ -10,7 +10,7 @@ from tqdm import tqdm
|
||||
|
||||
from facefusion import logger, state_manager, wording
|
||||
from facefusion.audio import create_empty_audio_frame
|
||||
from facefusion.common_helper import is_windows
|
||||
from facefusion.common_helper import get_first, is_windows
|
||||
from facefusion.content_analyser import analyse_stream
|
||||
from facefusion.face_analyser import get_average_face, get_many_faces
|
||||
from facefusion.ffmpeg import open_ffmpeg
|
||||
@ -27,14 +27,17 @@ WEBCAM_START_BUTTON : Optional[gradio.Button] = None
|
||||
WEBCAM_STOP_BUTTON : Optional[gradio.Button] = None
|
||||
|
||||
|
||||
def get_webcam_capture() -> Optional[cv2.VideoCapture]:
|
||||
def get_webcam_capture(webcam_device_id : int) -> Optional[cv2.VideoCapture]:
|
||||
global WEBCAM_CAPTURE
|
||||
|
||||
if WEBCAM_CAPTURE is None:
|
||||
cv2.setLogLevel(0)
|
||||
if is_windows():
|
||||
webcam_capture = cv2.VideoCapture(0, cv2.CAP_DSHOW)
|
||||
webcam_capture = cv2.VideoCapture(webcam_device_id, cv2.CAP_DSHOW)
|
||||
else:
|
||||
webcam_capture = cv2.VideoCapture(0)
|
||||
webcam_capture = cv2.VideoCapture(webcam_device_id)
|
||||
cv2.setLogLevel(3)
|
||||
|
||||
if webcam_capture and webcam_capture.isOpened():
|
||||
WEBCAM_CAPTURE = webcam_capture
|
||||
return WEBCAM_CAPTURE
|
||||
@ -43,7 +46,7 @@ def get_webcam_capture() -> Optional[cv2.VideoCapture]:
|
||||
def clear_webcam_capture() -> None:
|
||||
global WEBCAM_CAPTURE
|
||||
|
||||
if WEBCAM_CAPTURE:
|
||||
if WEBCAM_CAPTURE and WEBCAM_CAPTURE.isOpened():
|
||||
WEBCAM_CAPTURE.release()
|
||||
WEBCAM_CAPTURE = None
|
||||
|
||||
@ -68,32 +71,42 @@ def render() -> None:
|
||||
|
||||
|
||||
def listen() -> None:
|
||||
webcam_device_id_dropdown = get_ui_component('webcam_device_id_dropdown')
|
||||
webcam_mode_radio = get_ui_component('webcam_mode_radio')
|
||||
webcam_resolution_dropdown = get_ui_component('webcam_resolution_dropdown')
|
||||
webcam_fps_slider = get_ui_component('webcam_fps_slider')
|
||||
source_image = get_ui_component('source_image')
|
||||
|
||||
if webcam_mode_radio and webcam_resolution_dropdown and webcam_fps_slider:
|
||||
start_event = WEBCAM_START_BUTTON.click(start, inputs = [ webcam_mode_radio, webcam_resolution_dropdown, webcam_fps_slider ], outputs = WEBCAM_IMAGE)
|
||||
WEBCAM_STOP_BUTTON.click(stop, cancels = start_event)
|
||||
if webcam_device_id_dropdown and webcam_mode_radio and webcam_resolution_dropdown and webcam_fps_slider:
|
||||
start_event = WEBCAM_START_BUTTON.click(start, inputs = [ webcam_device_id_dropdown, webcam_mode_radio, webcam_resolution_dropdown, webcam_fps_slider ], outputs = WEBCAM_IMAGE)
|
||||
WEBCAM_STOP_BUTTON.click(stop, cancels = start_event, outputs = WEBCAM_IMAGE)
|
||||
|
||||
if source_image:
|
||||
source_image.change(stop, cancels = start_event, outputs = WEBCAM_IMAGE)
|
||||
|
||||
|
||||
def start(webcam_mode : WebcamMode, webcam_resolution : str, webcam_fps : Fps) -> Generator[VisionFrame, None, None]:
|
||||
def start(webcam_device_id : int, webcam_mode : WebcamMode, webcam_resolution : str, webcam_fps : Fps) -> Generator[VisionFrame, None, None]:
|
||||
state_manager.set_item('face_selector_mode', 'one')
|
||||
source_image_paths = filter_image_paths(state_manager.get_item('source_paths'))
|
||||
source_frames = read_static_images(source_image_paths)
|
||||
source_faces = get_many_faces(source_frames)
|
||||
source_face = get_average_face(source_faces)
|
||||
stream = None
|
||||
webcam_capture = None
|
||||
|
||||
if webcam_mode in [ 'udp', 'v4l2' ]:
|
||||
stream = open_stream(webcam_mode, webcam_resolution, webcam_fps) #type:ignore[arg-type]
|
||||
webcam_width, webcam_height = unpack_resolution(webcam_resolution)
|
||||
webcam_capture = get_webcam_capture()
|
||||
|
||||
if isinstance(webcam_device_id, int):
|
||||
webcam_capture = get_webcam_capture(webcam_device_id)
|
||||
|
||||
if webcam_capture and webcam_capture.isOpened():
|
||||
webcam_capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG')) #type:ignore[attr-defined]
|
||||
webcam_capture.set(cv2.CAP_PROP_FRAME_WIDTH, webcam_width)
|
||||
webcam_capture.set(cv2.CAP_PROP_FRAME_HEIGHT, webcam_height)
|
||||
webcam_capture.set(cv2.CAP_PROP_FPS, webcam_fps)
|
||||
|
||||
for capture_frame in multi_process_capture(source_face, webcam_capture, webcam_fps):
|
||||
if webcam_mode == 'inline':
|
||||
yield normalize_frame_color(capture_frame)
|
||||
@ -107,19 +120,15 @@ def start(webcam_mode : WebcamMode, webcam_resolution : str, webcam_fps : Fps) -
|
||||
|
||||
def multi_process_capture(source_face : Face, webcam_capture : cv2.VideoCapture, webcam_fps : Fps) -> Generator[VisionFrame, None, None]:
|
||||
deque_capture_frames: Deque[VisionFrame] = deque()
|
||||
with tqdm(desc = wording.get('processing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
|
||||
progress.set_postfix(
|
||||
{
|
||||
'execution_providers': state_manager.get_item('execution_providers'),
|
||||
'execution_thread_count': state_manager.get_item('execution_thread_count')
|
||||
})
|
||||
|
||||
with tqdm(desc = wording.get('streaming'), unit = 'frame', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
|
||||
with ThreadPoolExecutor(max_workers = state_manager.get_item('execution_thread_count')) as executor:
|
||||
futures = []
|
||||
|
||||
while webcam_capture and webcam_capture.isOpened():
|
||||
_, capture_frame = webcam_capture.read()
|
||||
if analyse_stream(capture_frame, webcam_fps):
|
||||
return
|
||||
yield None
|
||||
future = executor.submit(process_stream_frame, source_face, capture_frame)
|
||||
futures.append(future)
|
||||
|
||||
@ -140,6 +149,7 @@ def stop() -> gradio.Image:
|
||||
|
||||
def process_stream_frame(source_face : Face, target_vision_frame : VisionFrame) -> VisionFrame:
|
||||
source_audio_frame = create_empty_audio_frame()
|
||||
|
||||
for processor_module in get_processors_modules(state_manager.get_item('processors')):
|
||||
logger.disable()
|
||||
if processor_module.pre_process('stream'):
|
||||
@ -155,13 +165,27 @@ def process_stream_frame(source_face : Face, target_vision_frame : VisionFrame)
|
||||
|
||||
def open_stream(stream_mode : StreamMode, stream_resolution : str, stream_fps : Fps) -> subprocess.Popen[bytes]:
|
||||
commands = [ '-f', 'rawvideo', '-pix_fmt', 'bgr24', '-s', stream_resolution, '-r', str(stream_fps), '-i', '-']
|
||||
|
||||
if stream_mode == 'udp':
|
||||
commands.extend([ '-b:v', '2000k', '-f', 'mpegts', 'udp://localhost:27000?pkt_size=1316' ])
|
||||
if stream_mode == 'v4l2':
|
||||
try:
|
||||
device_name = os.listdir('/sys/devices/virtual/video4linux')[0]
|
||||
device_name = get_first(os.listdir('/sys/devices/virtual/video4linux'))
|
||||
if device_name:
|
||||
commands.extend([ '-f', 'v4l2', '/dev/' + device_name ])
|
||||
except FileNotFoundError:
|
||||
logger.error(wording.get('stream_not_loaded').format(stream_mode = stream_mode), __name__)
|
||||
return open_ffmpeg(commands)
|
||||
|
||||
|
||||
def get_available_webcam_ids(webcam_id_start : int, webcam_id_end : int) -> List[int]:
|
||||
available_webcam_ids = []
|
||||
|
||||
for index in range(webcam_id_start, webcam_id_end):
|
||||
webcam_capture = get_webcam_capture(index)
|
||||
|
||||
if webcam_capture and webcam_capture.isOpened():
|
||||
available_webcam_ids.append(index)
|
||||
clear_webcam_capture()
|
||||
|
||||
return available_webcam_ids
|
||||
|
@ -3,19 +3,29 @@ from typing import Optional
|
||||
import gradio
|
||||
|
||||
from facefusion import wording
|
||||
from facefusion.common_helper import get_first
|
||||
from facefusion.uis import choices as uis_choices
|
||||
from facefusion.uis.components.webcam import get_available_webcam_ids
|
||||
from facefusion.uis.core import register_ui_component
|
||||
|
||||
WEBCAM_DEVICE_ID_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
WEBCAM_MODE_RADIO : Optional[gradio.Radio] = None
|
||||
WEBCAM_RESOLUTION_DROPDOWN : Optional[gradio.Dropdown] = None
|
||||
WEBCAM_FPS_SLIDER : Optional[gradio.Slider] = None
|
||||
|
||||
|
||||
def render() -> None:
|
||||
global WEBCAM_DEVICE_ID_DROPDOWN
|
||||
global WEBCAM_MODE_RADIO
|
||||
global WEBCAM_RESOLUTION_DROPDOWN
|
||||
global WEBCAM_FPS_SLIDER
|
||||
|
||||
available_webcam_ids = get_available_webcam_ids(0, 10) or [ 'none' ] #type:ignore[list-item]
|
||||
WEBCAM_DEVICE_ID_DROPDOWN = gradio.Dropdown(
|
||||
value = get_first(available_webcam_ids),
|
||||
label = wording.get('uis.webcam_device_id_dropdown'),
|
||||
choices = available_webcam_ids
|
||||
)
|
||||
WEBCAM_MODE_RADIO = gradio.Radio(
|
||||
label = wording.get('uis.webcam_mode_radio'),
|
||||
choices = uis_choices.webcam_modes,
|
||||
@ -33,6 +43,7 @@ def render() -> None:
|
||||
minimum = 1,
|
||||
maximum = 60
|
||||
)
|
||||
register_ui_component('webcam_device_id_dropdown', WEBCAM_DEVICE_ID_DROPDOWN)
|
||||
register_ui_component('webcam_mode_radio', WEBCAM_MODE_RADIO)
|
||||
register_ui_component('webcam_resolution_dropdown', WEBCAM_RESOLUTION_DROPDOWN)
|
||||
register_ui_component('webcam_fps_slider', WEBCAM_FPS_SLIDER)
|
||||
|
@ -10,16 +10,8 @@ from gradio.themes import Size
|
||||
from facefusion import logger, metadata, state_manager, wording
|
||||
from facefusion.exit_helper import hard_exit
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.uis import overrides
|
||||
from facefusion.uis.typing import Component, ComponentName
|
||||
|
||||
os.environ['GRADIO_ANALYTICS_ENABLED'] = '0'
|
||||
|
||||
warnings.filterwarnings('ignore', category = UserWarning, module = 'gradio')
|
||||
|
||||
gradio.processing_utils.encode_array_to_base64 = overrides.encode_array_to_base64
|
||||
gradio.processing_utils.encode_pil_to_base64 = overrides.encode_pil_to_base64
|
||||
|
||||
UI_COMPONENTS: Dict[ComponentName, Component] = {}
|
||||
UI_LAYOUT_MODULES : List[ModuleType] = []
|
||||
UI_LAYOUT_METHODS =\
|
||||
@ -77,6 +69,13 @@ def register_ui_component(component_name : ComponentName, component: Component)
|
||||
UI_COMPONENTS[component_name] = component
|
||||
|
||||
|
||||
def init() -> None:
|
||||
os.environ['GRADIO_ANALYTICS_ENABLED'] = '0'
|
||||
os.environ['GRADIO_TEMP_DIR'] = os.path.join(state_manager.get_item('temp_path'), 'gradio')
|
||||
|
||||
warnings.filterwarnings('ignore', category = UserWarning, module = 'gradio')
|
||||
|
||||
|
||||
def launch() -> None:
|
||||
ui_layouts_total = len(state_manager.get_item('ui_layouts'))
|
||||
with gradio.Blocks(theme = get_theme(), css = get_css(), title = metadata.get('name') + ' ' + metadata.get('version'), fill_width = True) as ui:
|
||||
@ -99,7 +98,20 @@ def launch() -> None:
|
||||
def get_theme() -> gradio.Theme:
|
||||
return gradio.themes.Base(
|
||||
primary_hue = gradio.themes.colors.red,
|
||||
secondary_hue = gradio.themes.colors.neutral,
|
||||
secondary_hue = gradio.themes.Color(
|
||||
name = 'neutral',
|
||||
c50 = '#fafafa',
|
||||
c100 = '#f5f5f5',
|
||||
c200 = '#e5e5e5',
|
||||
c300 = '#d4d4d4',
|
||||
c400 = '#a3a3a3',
|
||||
c500 = '#737373',
|
||||
c600 = '#525252',
|
||||
c700 = '#404040',
|
||||
c800 = '#262626',
|
||||
c900 = '#212121',
|
||||
c950 = '#171717',
|
||||
),
|
||||
radius_size = Size(
|
||||
xxs = '0.375rem',
|
||||
xs = '0.375rem',
|
||||
@ -111,11 +123,18 @@ def get_theme() -> gradio.Theme:
|
||||
),
|
||||
font = gradio.themes.GoogleFont('Open Sans')
|
||||
).set(
|
||||
color_accent = 'transparent',
|
||||
color_accent_soft = 'transparent',
|
||||
color_accent_soft_dark = 'transparent',
|
||||
background_fill_primary = '*neutral_100',
|
||||
background_fill_primary_dark = '*neutral_950',
|
||||
background_fill_secondary = '*neutral_50',
|
||||
background_fill_secondary_dark = '*neutral_800',
|
||||
block_background_fill = 'white',
|
||||
block_background_fill_dark = '*neutral_900',
|
||||
block_border_width = '0',
|
||||
block_label_background_fill = '*neutral_100',
|
||||
block_label_background_fill_dark = '*neutral_700',
|
||||
block_label_background_fill_dark = '*neutral_800',
|
||||
block_label_border_width = 'none',
|
||||
block_label_margin = '0.5rem',
|
||||
block_label_radius = '*radius_md',
|
||||
@ -124,39 +143,48 @@ def get_theme() -> gradio.Theme:
|
||||
block_label_text_color_dark = 'white',
|
||||
block_label_text_weight = '600',
|
||||
block_title_background_fill = '*neutral_100',
|
||||
block_title_background_fill_dark = '*neutral_700',
|
||||
block_title_background_fill_dark = '*neutral_800',
|
||||
block_title_padding = '*block_label_padding',
|
||||
block_title_radius = '*block_label_radius',
|
||||
block_title_text_color = '*neutral_700',
|
||||
block_title_text_size = '*text_sm',
|
||||
block_title_text_weight = '600',
|
||||
block_padding = '0.5rem',
|
||||
border_color_accent = 'transparent',
|
||||
border_color_accent_dark = 'transparent',
|
||||
border_color_accent_subdued = 'transparent',
|
||||
border_color_accent_subdued_dark = 'transparent',
|
||||
border_color_primary = 'transparent',
|
||||
border_color_primary_dark = 'transparent',
|
||||
button_large_padding = '2rem 0.5rem',
|
||||
button_large_text_weight = 'normal',
|
||||
button_primary_background_fill = '*primary_500',
|
||||
button_primary_background_fill_dark = '*primary_600',
|
||||
button_primary_text_color = 'white',
|
||||
button_secondary_background_fill = 'white',
|
||||
button_secondary_border_color = 'transparent',
|
||||
button_secondary_border_color_dark = 'transparent',
|
||||
button_secondary_border_color_hover = 'transparent',
|
||||
button_secondary_border_color_hover_dark = 'transparent',
|
||||
button_secondary_background_fill_dark = '*neutral_800',
|
||||
button_secondary_background_fill_hover = 'white',
|
||||
button_secondary_background_fill_hover_dark = '*neutral_800',
|
||||
button_secondary_text_color = '*neutral_800',
|
||||
button_small_padding = '0.75rem',
|
||||
button_small_text_size = '0.875rem',
|
||||
checkbox_background_color = '*neutral_200',
|
||||
checkbox_background_color_dark = '*neutral_900',
|
||||
checkbox_background_color_selected = '*primary_600',
|
||||
checkbox_background_color_selected_dark = '*primary_700',
|
||||
checkbox_border_color_focus = '*primary_500',
|
||||
checkbox_border_color_focus_dark = '*primary_600',
|
||||
checkbox_border_color_selected = '*primary_600',
|
||||
checkbox_border_color_selected_dark = '*primary_700',
|
||||
checkbox_label_background_fill = '*neutral_50',
|
||||
checkbox_label_background_fill_dark = '*neutral_800',
|
||||
checkbox_label_background_fill_hover = '*neutral_50',
|
||||
checkbox_label_background_fill_hover_dark = '*neutral_800',
|
||||
checkbox_label_background_fill_selected = '*primary_500',
|
||||
checkbox_label_background_fill_selected_dark = '*primary_600',
|
||||
checkbox_label_text_color_selected = 'white',
|
||||
error_background_fill = 'white',
|
||||
error_background_fill_dark = '*neutral_900',
|
||||
error_text_color = '*primary_500',
|
||||
error_text_color_dark = '*primary_600',
|
||||
input_background_fill = '*neutral_50',
|
||||
input_background_fill_dark = '*neutral_800',
|
||||
shadow_drop = 'none',
|
||||
slider_color = '*primary_500',
|
||||
slider_color_dark = '*primary_600'
|
||||
|
@ -1,26 +1,24 @@
|
||||
import gradio
|
||||
|
||||
from facefusion import state_manager
|
||||
from facefusion.download import conditional_download
|
||||
from facefusion.uis.components import about, age_modifier_options, benchmark, benchmark_options, execution, execution_queue_count, execution_thread_count, expression_restorer_options, face_debugger_options, face_editor_options, face_enhancer_options, face_swapper_options, frame_colorizer_options, frame_enhancer_options, lip_syncer_options, memory, processors
|
||||
from facefusion.download import conditional_download, resolve_download_url
|
||||
from facefusion.uis.components import about, age_modifier_options, benchmark, benchmark_options, deep_swapper_options, download, execution, execution_queue_count, execution_thread_count, expression_restorer_options, face_debugger_options, face_editor_options, face_enhancer_options, face_swapper_options, frame_colorizer_options, frame_enhancer_options, lip_syncer_options, memory, processors
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
if not state_manager.get_item('skip_download'):
|
||||
conditional_download('.assets/examples',
|
||||
[
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/source.jpg',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/source.mp3',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-360p.mp4',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-540p.mp4',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-720p.mp4',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-1080p.mp4',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-1440p.mp4',
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-2160p.mp4'
|
||||
resolve_download_url('examples-3.0.0', 'source.jpg'),
|
||||
resolve_download_url('examples-3.0.0', 'source.mp3'),
|
||||
resolve_download_url('examples-3.0.0', 'target-240p.mp4'),
|
||||
resolve_download_url('examples-3.0.0', 'target-360p.mp4'),
|
||||
resolve_download_url('examples-3.0.0', 'target-540p.mp4'),
|
||||
resolve_download_url('examples-3.0.0', 'target-720p.mp4'),
|
||||
resolve_download_url('examples-3.0.0', 'target-1080p.mp4'),
|
||||
resolve_download_url('examples-3.0.0', 'target-1440p.mp4'),
|
||||
resolve_download_url('examples-3.0.0', 'target-2160p.mp4')
|
||||
])
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def render() -> gradio.Blocks:
|
||||
@ -33,6 +31,8 @@ def render() -> gradio.Blocks:
|
||||
processors.render()
|
||||
with gradio.Blocks():
|
||||
age_modifier_options.render()
|
||||
with gradio.Blocks():
|
||||
deep_swapper_options.render()
|
||||
with gradio.Blocks():
|
||||
expression_restorer_options.render()
|
||||
with gradio.Blocks():
|
||||
@ -54,6 +54,9 @@ def render() -> gradio.Blocks:
|
||||
execution_thread_count.render()
|
||||
execution_queue_count.render()
|
||||
with gradio.Blocks():
|
||||
download.render()
|
||||
with gradio.Blocks():
|
||||
state_manager.set_item('video_memory_strategy', 'tolerant')
|
||||
memory.render()
|
||||
with gradio.Blocks():
|
||||
benchmark_options.render()
|
||||
@ -66,7 +69,9 @@ def render() -> gradio.Blocks:
|
||||
def listen() -> None:
|
||||
processors.listen()
|
||||
age_modifier_options.listen()
|
||||
deep_swapper_options.listen()
|
||||
expression_restorer_options.listen()
|
||||
download.listen()
|
||||
face_debugger_options.listen()
|
||||
face_editor_options.listen()
|
||||
face_enhancer_options.listen()
|
||||
|
@ -1,7 +1,7 @@
|
||||
import gradio
|
||||
|
||||
from facefusion import state_manager
|
||||
from facefusion.uis.components import about, age_modifier_options, common_options, execution, execution_queue_count, execution_thread_count, expression_restorer_options, face_debugger_options, face_detector, face_editor_options, face_enhancer_options, face_landmarker, face_masker, face_selector, face_swapper_options, frame_colorizer_options, frame_enhancer_options, instant_runner, job_manager, job_runner, lip_syncer_options, memory, output, output_options, preview, processors, source, target, temp_frame, terminal, trim_frame, ui_workflow
|
||||
from facefusion.uis.components import about, age_modifier_options, common_options, deep_swapper_options, download, execution, execution_queue_count, execution_thread_count, expression_restorer_options, face_debugger_options, face_detector, face_editor_options, face_enhancer_options, face_landmarker, face_masker, face_selector, face_swapper_options, frame_colorizer_options, frame_enhancer_options, instant_runner, job_manager, job_runner, lip_syncer_options, memory, output, output_options, preview, processors, source, target, temp_frame, terminal, trim_frame, ui_workflow
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
@ -18,6 +18,8 @@ def render() -> gradio.Blocks:
|
||||
processors.render()
|
||||
with gradio.Blocks():
|
||||
age_modifier_options.render()
|
||||
with gradio.Blocks():
|
||||
deep_swapper_options.render()
|
||||
with gradio.Blocks():
|
||||
expression_restorer_options.render()
|
||||
with gradio.Blocks():
|
||||
@ -38,6 +40,8 @@ def render() -> gradio.Blocks:
|
||||
execution.render()
|
||||
execution_thread_count.render()
|
||||
execution_queue_count.render()
|
||||
with gradio.Blocks():
|
||||
download.render()
|
||||
with gradio.Blocks():
|
||||
memory.render()
|
||||
with gradio.Blocks():
|
||||
@ -79,6 +83,7 @@ def render() -> gradio.Blocks:
|
||||
def listen() -> None:
|
||||
processors.listen()
|
||||
age_modifier_options.listen()
|
||||
deep_swapper_options.listen()
|
||||
expression_restorer_options.listen()
|
||||
face_debugger_options.listen()
|
||||
face_editor_options.listen()
|
||||
@ -90,6 +95,7 @@ def listen() -> None:
|
||||
execution.listen()
|
||||
execution_thread_count.listen()
|
||||
execution_queue_count.listen()
|
||||
download.listen()
|
||||
memory.listen()
|
||||
temp_frame.listen()
|
||||
output_options.listen()
|
||||
|
@ -1,7 +1,7 @@
|
||||
import gradio
|
||||
|
||||
from facefusion import state_manager
|
||||
from facefusion.uis.components import about, age_modifier_options, execution, execution_thread_count, face_debugger_options, face_enhancer_options, face_swapper_options, frame_colorizer_options, frame_enhancer_options, lip_syncer_options, processors, source, webcam, webcam_options
|
||||
from facefusion.uis.components import about, age_modifier_options, deep_swapper_options, download, execution, execution_thread_count, expression_restorer_options, face_debugger_options, face_editor_options, face_enhancer_options, face_swapper_options, frame_colorizer_options, frame_enhancer_options, lip_syncer_options, processors, source, webcam, webcam_options
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
@ -18,8 +18,14 @@ def render() -> gradio.Blocks:
|
||||
processors.render()
|
||||
with gradio.Blocks():
|
||||
age_modifier_options.render()
|
||||
with gradio.Blocks():
|
||||
deep_swapper_options.render()
|
||||
with gradio.Blocks():
|
||||
expression_restorer_options.render()
|
||||
with gradio.Blocks():
|
||||
face_debugger_options.render()
|
||||
with gradio.Blocks():
|
||||
face_editor_options.render()
|
||||
with gradio.Blocks():
|
||||
face_enhancer_options.render()
|
||||
with gradio.Blocks():
|
||||
@ -33,6 +39,8 @@ def render() -> gradio.Blocks:
|
||||
with gradio.Blocks():
|
||||
execution.render()
|
||||
execution_thread_count.render()
|
||||
with gradio.Blocks():
|
||||
download.render()
|
||||
with gradio.Blocks():
|
||||
webcam_options.render()
|
||||
with gradio.Blocks():
|
||||
@ -46,7 +54,11 @@ def render() -> gradio.Blocks:
|
||||
def listen() -> None:
|
||||
processors.listen()
|
||||
age_modifier_options.listen()
|
||||
deep_swapper_options.listen()
|
||||
expression_restorer_options.listen()
|
||||
download.listen()
|
||||
face_debugger_options.listen()
|
||||
face_editor_options.listen()
|
||||
face_enhancer_options.listen()
|
||||
face_swapper_options.listen()
|
||||
frame_colorizer_options.listen()
|
||||
|
@ -1,15 +0,0 @@
|
||||
import base64
|
||||
from typing import Any
|
||||
|
||||
import cv2
|
||||
import numpy
|
||||
from numpy._typing import NDArray
|
||||
|
||||
|
||||
def encode_array_to_base64(array : NDArray[Any]) -> str:
|
||||
_, buffer = cv2.imencode('.jpg', array[:, :, ::-1])
|
||||
return 'data:image/jpeg;base64,' + base64.b64encode(buffer.tobytes()).decode('utf-8')
|
||||
|
||||
|
||||
def encode_pil_to_base64(image : Any) -> str:
|
||||
return encode_array_to_base64(numpy.asarray(image)[:, :, ::-1])
|
@ -9,6 +9,8 @@ ComponentName = Literal\
|
||||
'age_modifier_model_dropdown',
|
||||
'benchmark_cycles_slider',
|
||||
'benchmark_runs_checkbox_group',
|
||||
'deep_swapper_model_dropdown',
|
||||
'deep_swapper_morph_slider',
|
||||
'expression_restorer_factor_slider',
|
||||
'expression_restorer_model_dropdown',
|
||||
'face_debugger_items_checkbox_group',
|
||||
@ -33,6 +35,7 @@ ComponentName = Literal\
|
||||
'face_editor_mouth_smile_slider',
|
||||
'face_enhancer_blend_slider',
|
||||
'face_enhancer_model_dropdown',
|
||||
'face_enhancer_weight_slider',
|
||||
'face_landmarker_model_dropdown',
|
||||
'face_landmarker_score_slider',
|
||||
'face_mask_blur_slider',
|
||||
@ -49,6 +52,8 @@ ComponentName = Literal\
|
||||
'face_selector_race_dropdown',
|
||||
'face_swapper_model_dropdown',
|
||||
'face_swapper_pixel_boost_dropdown',
|
||||
'face_occluder_model_dropdown',
|
||||
'face_parser_model_dropdown',
|
||||
'frame_colorizer_blend_slider',
|
||||
'frame_colorizer_model_dropdown',
|
||||
'frame_colorizer_size_dropdown',
|
||||
@ -68,6 +73,7 @@ ComponentName = Literal\
|
||||
'target_image',
|
||||
'target_video',
|
||||
'ui_workflow_dropdown',
|
||||
'webcam_device_id_dropdown',
|
||||
'webcam_fps_slider',
|
||||
'webcam_mode_radio',
|
||||
'webcam_resolution_dropdown'
|
||||
|
@ -21,6 +21,6 @@ def convert_str_none(value : str) -> Optional[str]:
|
||||
def suggest_output_path(output_directory_path : str, target_path : str) -> Optional[str]:
|
||||
if is_image(target_path) or is_video(target_path):
|
||||
_, target_extension = os.path.splitext(target_path)
|
||||
output_name = hashlib.sha1(str(state_manager.get_state()).encode('utf-8')).hexdigest()[:8]
|
||||
output_name = hashlib.sha1(str(state_manager.get_state()).encode()).hexdigest()[:8]
|
||||
return os.path.join(output_directory_path, output_name + target_extension)
|
||||
return None
|
||||
|
@ -5,10 +5,10 @@ import cv2
|
||||
import numpy
|
||||
from cv2.typing import Size
|
||||
|
||||
from facefusion.choices import image_template_sizes, video_template_sizes
|
||||
import facefusion.choices
|
||||
from facefusion.common_helper import is_windows
|
||||
from facefusion.filesystem import is_image, is_video, sanitize_path_for_windows
|
||||
from facefusion.typing import Fps, Orientation, Resolution, VisionFrame
|
||||
from facefusion.typing import Duration, Fps, Orientation, Resolution, VisionFrame
|
||||
|
||||
|
||||
@lru_cache(maxsize = 128)
|
||||
@ -64,8 +64,8 @@ def create_image_resolutions(resolution : Resolution) -> List[str]:
|
||||
if resolution:
|
||||
width, height = resolution
|
||||
temp_resolutions.append(normalize_resolution(resolution))
|
||||
for template_size in image_template_sizes:
|
||||
temp_resolutions.append(normalize_resolution((width * template_size, height * template_size)))
|
||||
for image_template_size in facefusion.choices.image_template_sizes:
|
||||
temp_resolutions.append(normalize_resolution((width * image_template_size, height * image_template_size)))
|
||||
temp_resolutions = sorted(set(temp_resolutions))
|
||||
for temp_resolution in temp_resolutions:
|
||||
resolutions.append(pack_resolution(temp_resolution))
|
||||
@ -119,6 +119,39 @@ def restrict_video_fps(video_path : str, fps : Fps) -> Fps:
|
||||
return fps
|
||||
|
||||
|
||||
def detect_video_duration(video_path : str) -> Duration:
|
||||
video_frame_total = count_video_frame_total(video_path)
|
||||
video_fps = detect_video_fps(video_path)
|
||||
|
||||
if video_frame_total and video_fps:
|
||||
return video_frame_total / video_fps
|
||||
return 0
|
||||
|
||||
|
||||
def count_trim_frame_total(video_path : str, trim_frame_start : Optional[int], trim_frame_end : Optional[int]) -> int:
|
||||
trim_frame_start, trim_frame_end = restrict_trim_frame(video_path, trim_frame_start, trim_frame_end)
|
||||
|
||||
return trim_frame_end - trim_frame_start
|
||||
|
||||
|
||||
def restrict_trim_frame(video_path : str, trim_frame_start : Optional[int], trim_frame_end : Optional[int]) -> Tuple[int, int]:
|
||||
video_frame_total = count_video_frame_total(video_path)
|
||||
|
||||
if isinstance(trim_frame_start, int):
|
||||
trim_frame_start = max(0, min(trim_frame_start, video_frame_total))
|
||||
if isinstance(trim_frame_end, int):
|
||||
trim_frame_end = max(0, min(trim_frame_end, video_frame_total))
|
||||
|
||||
if isinstance(trim_frame_start, int) and isinstance(trim_frame_end, int):
|
||||
return trim_frame_start, trim_frame_end
|
||||
if isinstance(trim_frame_start, int):
|
||||
return trim_frame_start, video_frame_total
|
||||
if isinstance(trim_frame_end, int):
|
||||
return 0, trim_frame_end
|
||||
|
||||
return 0, video_frame_total
|
||||
|
||||
|
||||
def detect_video_resolution(video_path : str) -> Optional[Resolution]:
|
||||
if is_video(video_path):
|
||||
if is_windows():
|
||||
@ -147,11 +180,11 @@ def create_video_resolutions(resolution : Resolution) -> List[str]:
|
||||
if resolution:
|
||||
width, height = resolution
|
||||
temp_resolutions.append(normalize_resolution(resolution))
|
||||
for template_size in video_template_sizes:
|
||||
for video_template_size in facefusion.choices.video_template_sizes:
|
||||
if width > height:
|
||||
temp_resolutions.append(normalize_resolution((template_size * width / height, template_size)))
|
||||
temp_resolutions.append(normalize_resolution((video_template_size * width / height, video_template_size)))
|
||||
else:
|
||||
temp_resolutions.append(normalize_resolution((template_size, template_size * height / width)))
|
||||
temp_resolutions.append(normalize_resolution((video_template_size, video_template_size * height / width)))
|
||||
temp_resolutions = sorted(set(temp_resolutions))
|
||||
for temp_resolution in temp_resolutions:
|
||||
resolutions.append(pack_resolution(temp_resolution))
|
||||
@ -202,6 +235,42 @@ def normalize_frame_color(vision_frame : VisionFrame) -> VisionFrame:
|
||||
return cv2.cvtColor(vision_frame, cv2.COLOR_BGR2RGB)
|
||||
|
||||
|
||||
def conditional_match_frame_color(source_vision_frame : VisionFrame, target_vision_frame : VisionFrame) -> VisionFrame:
|
||||
histogram_factor = calc_histogram_difference(source_vision_frame, target_vision_frame)
|
||||
target_vision_frame = blend_vision_frames(target_vision_frame, match_frame_color(source_vision_frame, target_vision_frame), histogram_factor)
|
||||
return target_vision_frame
|
||||
|
||||
|
||||
def match_frame_color(source_vision_frame : VisionFrame, target_vision_frame : VisionFrame) -> VisionFrame:
|
||||
color_difference_sizes = numpy.linspace(16, target_vision_frame.shape[0], 3, endpoint = False)
|
||||
|
||||
for color_difference_size in color_difference_sizes:
|
||||
source_vision_frame = equalize_frame_color(source_vision_frame, target_vision_frame, normalize_resolution((color_difference_size, color_difference_size)))
|
||||
target_vision_frame = equalize_frame_color(source_vision_frame, target_vision_frame, target_vision_frame.shape[:2][::-1])
|
||||
return target_vision_frame
|
||||
|
||||
|
||||
def equalize_frame_color(source_vision_frame : VisionFrame, target_vision_frame : VisionFrame, size : Size) -> VisionFrame:
|
||||
source_frame_resize = cv2.resize(source_vision_frame, size, interpolation = cv2.INTER_AREA).astype(numpy.float32)
|
||||
target_frame_resize = cv2.resize(target_vision_frame, size, interpolation = cv2.INTER_AREA).astype(numpy.float32)
|
||||
color_difference_vision_frame = numpy.subtract(source_frame_resize, target_frame_resize)
|
||||
color_difference_vision_frame = cv2.resize(color_difference_vision_frame, target_vision_frame.shape[:2][::-1], interpolation = cv2.INTER_CUBIC)
|
||||
target_vision_frame = numpy.add(target_vision_frame, color_difference_vision_frame).clip(0, 255).astype(numpy.uint8)
|
||||
return target_vision_frame
|
||||
|
||||
|
||||
def calc_histogram_difference(source_vision_frame : VisionFrame, target_vision_frame : VisionFrame) -> float:
|
||||
histogram_source = cv2.calcHist([cv2.cvtColor(source_vision_frame, cv2.COLOR_BGR2HSV)], [ 0, 1 ], None, [ 50, 60 ], [ 0, 180, 0, 256 ])
|
||||
histogram_target = cv2.calcHist([cv2.cvtColor(target_vision_frame, cv2.COLOR_BGR2HSV)], [ 0, 1 ], None, [ 50, 60 ], [ 0, 180, 0, 256 ])
|
||||
histogram_differnce = float(numpy.interp(cv2.compareHist(histogram_source, histogram_target, cv2.HISTCMP_CORREL), [ -1, 1 ], [ 0, 1 ]))
|
||||
return histogram_differnce
|
||||
|
||||
|
||||
def blend_vision_frames(source_vision_frame : VisionFrame, target_vision_frame : VisionFrame, blend_factor : float) -> VisionFrame:
|
||||
blend_vision_frame = cv2.addWeighted(source_vision_frame, 1 - blend_factor, target_vision_frame, blend_factor, 0)
|
||||
return blend_vision_frame
|
||||
|
||||
|
||||
def create_tile_frames(vision_frame : VisionFrame, size : Size) -> Tuple[List[VisionFrame], int, int]:
|
||||
vision_frame = numpy.pad(vision_frame, ((size[1], size[1]), (size[1], size[1]), (0, 0)))
|
||||
tile_width = size[0] - 2 * size[2]
|
||||
|
@ -1,23 +1,27 @@
|
||||
from functools import lru_cache
|
||||
from typing import Tuple
|
||||
|
||||
import numpy
|
||||
import scipy
|
||||
|
||||
from facefusion import inference_manager
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources
|
||||
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
|
||||
from facefusion.filesystem import resolve_relative_path
|
||||
from facefusion.thread_helper import thread_semaphore
|
||||
from facefusion.typing import Audio, AudioChunk, InferencePool, ModelOptions, ModelSet
|
||||
from facefusion.typing import Audio, AudioChunk, DownloadScope, InferencePool, ModelOptions, ModelSet
|
||||
|
||||
MODEL_SET : ModelSet =\
|
||||
{
|
||||
|
||||
@lru_cache(maxsize = None)
|
||||
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
|
||||
return\
|
||||
{
|
||||
'kim_vocal_2':
|
||||
{
|
||||
'hashes':
|
||||
{
|
||||
'voice_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/kim_vocal_2.hash',
|
||||
'url': resolve_download_url('models-3.0.0', 'kim_vocal_2.hash'),
|
||||
'path': resolve_relative_path('../.assets/models/kim_vocal_2.hash')
|
||||
}
|
||||
},
|
||||
@ -25,12 +29,12 @@ MODEL_SET : ModelSet =\
|
||||
{
|
||||
'voice_extractor':
|
||||
{
|
||||
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/kim_vocal_2.onnx',
|
||||
'url': resolve_download_url('models-3.0.0', 'kim_vocal_2.onnx'),
|
||||
'path': resolve_relative_path('../.assets/models/kim_vocal_2.onnx')
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def get_inference_pool() -> InferencePool:
|
||||
@ -43,15 +47,14 @@ def clear_inference_pool() -> None:
|
||||
|
||||
|
||||
def get_model_options() -> ModelOptions:
|
||||
return MODEL_SET.get('kim_vocal_2')
|
||||
return create_static_model_set('full').get('kim_vocal_2')
|
||||
|
||||
|
||||
def pre_check() -> bool:
|
||||
download_directory_path = resolve_relative_path('../.assets/models')
|
||||
model_hashes = get_model_options().get('hashes')
|
||||
model_sources = get_model_options().get('sources')
|
||||
|
||||
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
|
||||
return conditional_download_hashes(model_hashes) and conditional_download_sources(model_sources)
|
||||
|
||||
|
||||
def batch_extract_voice(audio : Audio, chunk_size : int, step_size : int) -> Audio:
|
||||
|
@ -11,7 +11,10 @@ WORDING : Dict[str, Any] =\
|
||||
'extracting_frames_succeed': 'Extracting frames succeed',
|
||||
'extracting_frames_failed': 'Extracting frames failed',
|
||||
'analysing': 'Analysing',
|
||||
'extracting': 'Extracting',
|
||||
'streaming': 'Streaming',
|
||||
'processing': 'Processing',
|
||||
'merging': 'Merging',
|
||||
'downloading': 'Downloading',
|
||||
'temp_frames_not_found': 'Temporary frames not found',
|
||||
'copying_image': 'Copying image with a resolution of {resolution}',
|
||||
@ -46,6 +49,7 @@ WORDING : Dict[str, Any] =\
|
||||
'ui_layout_not_loaded': 'UI layout {ui_layout} could not be loaded',
|
||||
'ui_layout_not_implemented': 'UI layout {ui_layout} not implemented correctly',
|
||||
'stream_not_loaded': 'Stream {stream_mode} could not be loaded',
|
||||
'stream_not_supported': 'Stream not supported',
|
||||
'job_created': 'Job {job_id} created',
|
||||
'job_not_created': 'Job {job_id} not created',
|
||||
'job_submitted': 'Job {job_id} submitted',
|
||||
@ -94,10 +98,15 @@ WORDING : Dict[str, Any] =\
|
||||
'skip_conda': 'skip the conda environment check',
|
||||
# paths
|
||||
'config_path': 'choose the config file to override defaults',
|
||||
'temp_path': 'specify the directory for the temporary resources',
|
||||
'jobs_path': 'specify the directory to store jobs',
|
||||
'source_paths': 'choose single or multiple source images or audios',
|
||||
'target_path': 'choose single target image or video',
|
||||
'output_path': 'specify the output image or video within a directory',
|
||||
'source_paths': 'choose the image or audio paths',
|
||||
'target_path': 'choose the image or video path',
|
||||
'output_path': 'specify the image or video within a directory',
|
||||
# patterns
|
||||
'source_pattern': 'choose the image or audio pattern',
|
||||
'target_pattern': 'choose the image or video pattern',
|
||||
'output_pattern': 'specify the image or video pattern',
|
||||
# face detector
|
||||
'face_detector_model': 'choose the model responsible for detecting the faces',
|
||||
'face_detector_size': 'specify the frame size provided to the face detector',
|
||||
@ -117,8 +126,10 @@ WORDING : Dict[str, Any] =\
|
||||
'reference_face_distance': 'specify the similarity between the reference face and target face',
|
||||
'reference_frame_number': 'specify the frame used to create the reference face',
|
||||
# face masker
|
||||
'face_occluder_model': 'choose the model responsible for the occlusion mask',
|
||||
'face_parser_model': 'choose the model responsible for the region mask',
|
||||
'face_mask_types': 'mix and match different face mask types (choices: {choices})',
|
||||
'face_mask_blur': 'specify the degree of blur applied the box mask',
|
||||
'face_mask_blur': 'specify the degree of blur applied to the box mask',
|
||||
'face_mask_padding': 'apply top, right, bottom and left padding to the box mask',
|
||||
'face_mask_regions': 'choose the facial features used for the region mask (choices: {choices})',
|
||||
# frame extraction
|
||||
@ -140,6 +151,8 @@ WORDING : Dict[str, Any] =\
|
||||
'processors': 'load a single or multiple processors (choices: {choices}, ...)',
|
||||
'age_modifier_model': 'choose the model responsible for aging the face',
|
||||
'age_modifier_direction': 'specify the direction in which the age should be modified',
|
||||
'deep_swapper_model': 'choose the model responsible for swapping the face',
|
||||
'deep_swapper_morph': 'morph between source face and target faces',
|
||||
'expression_restorer_model': 'choose the model responsible for restoring the expression',
|
||||
'expression_restorer_factor': 'restore factor of expression from the target face',
|
||||
'face_debugger_items': 'load a single or multiple processors (choices: {choices})',
|
||||
@ -160,6 +173,7 @@ WORDING : Dict[str, Any] =\
|
||||
'face_editor_head_roll': 'specify the head roll',
|
||||
'face_enhancer_model': 'choose the model responsible for enhancing the face',
|
||||
'face_enhancer_blend': 'blend the enhanced into the previous face',
|
||||
'face_enhancer_weight': 'specify the degree of weight applied to the face',
|
||||
'face_swapper_model': 'choose the model responsible for swapping the face',
|
||||
'face_swapper_pixel_boost': 'choose the pixel boost resolution for the face swapper',
|
||||
'frame_colorizer_model': 'choose the model responsible for colorizing the frame',
|
||||
@ -174,18 +188,21 @@ WORDING : Dict[str, Any] =\
|
||||
'ui_workflow': 'choose the ui workflow',
|
||||
# execution
|
||||
'execution_device_id': 'specify the device used for processing',
|
||||
'execution_providers': 'accelerate the model inference using different providers (choices: {choices}, ...)',
|
||||
'execution_providers': 'inference using different providers (choices: {choices}, ...)',
|
||||
'execution_thread_count': 'specify the amount of parallel threads while processing',
|
||||
'execution_queue_count': 'specify the amount of frames each thread is processing',
|
||||
# download
|
||||
'download_providers': 'download using different providers (choices: {choices}, ...)',
|
||||
'download_scope': 'specify the download scope',
|
||||
# memory
|
||||
'video_memory_strategy': 'balance fast processing and low VRAM usage',
|
||||
'system_memory_limit': 'limit the available RAM that can be used while processing',
|
||||
# misc
|
||||
'skip_download': 'omit downloads and remote lookups',
|
||||
'log_level': 'adjust the message severity displayed in the terminal',
|
||||
# run
|
||||
'run': 'run the program',
|
||||
'headless_run': 'run the program in headless mode',
|
||||
'batch_run': 'run the program in batch mode',
|
||||
'force_download': 'force automate downloads and exit',
|
||||
# jobs
|
||||
'job_id': 'specify the job id',
|
||||
@ -223,6 +240,9 @@ WORDING : Dict[str, Any] =\
|
||||
'benchmark_runs_checkbox_group': 'BENCHMARK RUNS',
|
||||
'clear_button': 'CLEAR',
|
||||
'common_options_checkbox_group': 'OPTIONS',
|
||||
'download_providers_checkbox_group': 'DOWNLOAD PROVIDERS',
|
||||
'deep_swapper_model_dropdown': 'DEEP SWAPPER MODEL',
|
||||
'deep_swapper_morph_slider': 'DEEP SWAPPER MORPH',
|
||||
'execution_providers_checkbox_group': 'EXECUTION PROVIDERS',
|
||||
'execution_queue_count_slider': 'EXECUTION QUEUE COUNT',
|
||||
'execution_thread_count_slider': 'EXECUTION THREAD COUNT',
|
||||
@ -250,6 +270,7 @@ WORDING : Dict[str, Any] =\
|
||||
'face_editor_mouth_smile_slider': 'FACE EDITOR MOUTH SMILE',
|
||||
'face_enhancer_blend_slider': 'FACE ENHANCER BLEND',
|
||||
'face_enhancer_model_dropdown': 'FACE ENHANCER MODEL',
|
||||
'face_enhancer_weight_slider': 'FACE ENHANCER WEIGHT',
|
||||
'face_landmarker_model_dropdown': 'FACE LANDMARKER MODEL',
|
||||
'face_landmarker_score_slider': 'FACE LANDMARKER SCORE',
|
||||
'face_mask_blur_slider': 'FACE MASK BLUR',
|
||||
@ -266,6 +287,8 @@ WORDING : Dict[str, Any] =\
|
||||
'face_selector_race_dropdown': 'FACE SELECTOR RACE',
|
||||
'face_swapper_model_dropdown': 'FACE SWAPPER MODEL',
|
||||
'face_swapper_pixel_boost_dropdown': 'FACE SWAPPER PIXEL BOOST',
|
||||
'face_occluder_model_dropdown': 'FACE OCCLUDER MODEL',
|
||||
'face_parser_model_dropdown': 'FACE PARSER MODEL',
|
||||
'frame_colorizer_blend_slider': 'FRAME COLORIZER BLEND',
|
||||
'frame_colorizer_model_dropdown': 'FRAME COLORIZER MODEL',
|
||||
'frame_colorizer_size_dropdown': 'FRAME COLORIZER SIZE',
|
||||
@ -307,6 +330,7 @@ WORDING : Dict[str, Any] =\
|
||||
'video_memory_strategy_dropdown': 'VIDEO MEMORY STRATEGY',
|
||||
'webcam_fps_slider': 'WEBCAM FPS',
|
||||
'webcam_image': 'WEBCAM',
|
||||
'webcam_device_id_dropdown': 'WEBCAM DEVICE ID',
|
||||
'webcam_mode_radio': 'WEBCAM MODE',
|
||||
'webcam_resolution_dropdown': 'WEBCAM RESOLUTION'
|
||||
}
|
||||
|
@ -1,10 +1,10 @@
|
||||
filetype==1.2.0
|
||||
gradio==4.44.0
|
||||
gradio-rangeslider==0.0.6
|
||||
numpy==2.1.0
|
||||
onnx==1.16.1
|
||||
onnxruntime==1.19.2
|
||||
gradio==5.9.1
|
||||
gradio-rangeslider==0.0.8
|
||||
numpy==2.2.0
|
||||
onnx==1.17.0
|
||||
onnxruntime==1.20.1
|
||||
opencv-python==4.10.0.84
|
||||
psutil==6.0.0
|
||||
tqdm==4.66.5
|
||||
psutil==6.1.1
|
||||
tqdm==4.67.1
|
||||
scipy==1.14.1
|
||||
|
@ -1,7 +1,7 @@
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
from facefusion.filesystem import create_directory, is_directory, is_file, remove_directory
|
||||
from facefusion.temp_helper import get_base_directory_path
|
||||
from facefusion.typing import JobStatus
|
||||
|
||||
|
||||
@ -14,7 +14,7 @@ def get_test_job_file(file_path : str, job_status : JobStatus) -> str:
|
||||
|
||||
|
||||
def get_test_jobs_directory() -> str:
|
||||
return os.path.join(get_base_directory_path(), 'test-jobs')
|
||||
return os.path.join(tempfile.gettempdir(), 'facefusion-test-jobs')
|
||||
|
||||
|
||||
def get_test_example_file(file_path : str) -> str:
|
||||
@ -22,7 +22,7 @@ def get_test_example_file(file_path : str) -> str:
|
||||
|
||||
|
||||
def get_test_examples_directory() -> str:
|
||||
return os.path.join(get_base_directory_path(), 'test-examples')
|
||||
return os.path.join(tempfile.gettempdir(), 'facefusion-test-examples')
|
||||
|
||||
|
||||
def is_test_output_file(file_path : str) -> bool:
|
||||
@ -34,7 +34,7 @@ def get_test_output_file(file_path : str) -> str:
|
||||
|
||||
|
||||
def get_test_outputs_directory() -> str:
|
||||
return os.path.join(get_base_directory_path(), 'test-outputs')
|
||||
return os.path.join(tempfile.gettempdir(), 'facefusion-test-outputs')
|
||||
|
||||
|
||||
def prepare_test_output_directory() -> bool:
|
||||
|
@ -17,8 +17,8 @@ def before_all() -> None:
|
||||
|
||||
|
||||
def test_get_audio_frame() -> None:
|
||||
assert get_audio_frame(get_test_example_file('source.mp3'), 25) is not None
|
||||
assert get_audio_frame(get_test_example_file('source.wav'), 25) is not None
|
||||
assert hasattr(get_audio_frame(get_test_example_file('source.mp3'), 25), '__array_interface__')
|
||||
assert hasattr(get_audio_frame(get_test_example_file('source.wav'), 25), '__array_interface__')
|
||||
assert get_audio_frame('invalid', 25) is None
|
||||
|
||||
|
||||
|
@ -25,14 +25,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_modify_age_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'age_modifier', '--age-modifier-direction', '100', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-age-face-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'age_modifier', '--age-modifier-direction', '100', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-age-face-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-age-face-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_modify_age_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'age_modifier', '--age-modifier-direction', '100', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-age-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'age_modifier', '--age-modifier-direction', '100', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-age-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-age-face-to-video.mp4') is True
|
||||
|
45
tests/test_cli_batch_runner.py
Normal file
45
tests/test_cli_batch_runner.py
Normal file
@ -0,0 +1,45 @@
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
|
||||
from facefusion.download import conditional_download
|
||||
from facefusion.jobs.job_manager import clear_jobs, init_jobs
|
||||
from .helper import get_test_example_file, get_test_examples_directory, get_test_jobs_directory, get_test_output_file, is_test_output_file, prepare_test_output_directory
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
def before_all() -> None:
|
||||
conditional_download(get_test_examples_directory(),
|
||||
[
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4'
|
||||
])
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('target-240p.mp4'), '-vframes', '1', get_test_example_file('target-240p-batch-1.jpg') ])
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('target-240p.mp4'), '-vframes', '2', get_test_example_file('target-240p-batch-2.jpg') ])
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'function', autouse = True)
|
||||
def before_each() -> None:
|
||||
clear_jobs(get_test_jobs_directory())
|
||||
init_jobs(get_test_jobs_directory())
|
||||
prepare_test_output_directory()
|
||||
|
||||
|
||||
def test_batch_run_targets() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'batch-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p-batch-*.jpg'), '-o', get_test_output_file('test-batch-run-targets-{index}.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-batch-run-targets-0.jpg') is True
|
||||
assert is_test_output_file('test-batch-run-targets-1.jpg') is True
|
||||
assert is_test_output_file('test-batch-run-targets-2.jpg') is False
|
||||
|
||||
|
||||
def test_batch_run_sources_to_targets() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'batch-run', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('target-240p-batch-*.jpg'), '-t', get_test_example_file('target-240p-batch-*.jpg'), '-o', get_test_output_file('test-batch-run-sources-to-targets-{index}.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-batch-run-sources-to-targets-0.jpg') is True
|
||||
assert is_test_output_file('test-batch-run-sources-to-targets-1.jpg') is True
|
||||
assert is_test_output_file('test-batch-run-sources-to-targets-2.jpg') is True
|
||||
assert is_test_output_file('test-batch-run-sources-to-targets-3.jpg') is True
|
||||
assert is_test_output_file('test-batch-run-sources-to-targets-4.jpg') is False
|
@ -25,14 +25,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_restore_expression_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'expression_restorer', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-restore-expression-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'expression_restorer', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-restore-expression-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-restore-expression-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_restore_expression_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'expression_restorer', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-restore-expression-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'expression_restorer', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-restore-expression-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-restore-expression-to-video.mp4') is True
|
||||
|
@ -26,14 +26,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_debug_face_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-debug-face-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-debug-face-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-debug-face-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_debug_face_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-debug-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-debug-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-debug-face-to-video.mp4') is True
|
||||
|
@ -26,14 +26,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_edit_face_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_editor', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-edit-face-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_editor', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-edit-face-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-edit-face-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_edit_face_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_editor', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-edit-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_editor', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-edit-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-edit-face-to-video.mp4') is True
|
||||
|
@ -26,14 +26,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_enhance_face_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_enhancer', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-enhance-face-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_enhancer', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-enhance-face-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-enhance-face-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_enhance_face_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_enhancer', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-enhance-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_enhancer', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-enhance-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-enhance-face-to-video.mp4') is True
|
||||
|
@ -26,14 +26,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_swap_face_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_swapper', '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-swap-face-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_swapper', '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-swap-face-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-swap-face-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_swap_face_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'face_swapper', '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-swap-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_swapper', '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-swap-face-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-swap-face-to-video.mp4') is True
|
||||
|
@ -27,14 +27,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_colorize_frame_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'frame_colorizer', '-t', get_test_example_file('target-240p-0sat.jpg'), '-o', get_test_output_file('test_colorize-frame-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'frame_colorizer', '-t', get_test_example_file('target-240p-0sat.jpg'), '-o', get_test_output_file('test_colorize-frame-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test_colorize-frame-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_colorize_frame_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'frame_colorizer', '-t', get_test_example_file('target-240p-0sat.mp4'), '-o', get_test_output_file('test-colorize-frame-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'frame_colorizer', '-t', get_test_example_file('target-240p-0sat.mp4'), '-o', get_test_output_file('test-colorize-frame-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-colorize-frame-to-video.mp4') is True
|
||||
|
@ -26,14 +26,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_enhance_frame_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'frame_enhancer', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-enhance-frame-to-image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'frame_enhancer', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-enhance-frame-to-image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-enhance-frame-to-image.jpg') is True
|
||||
|
||||
|
||||
def test_enhance_frame_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'frame_enhancer', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-enhance-frame-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'frame_enhancer', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-enhance-frame-to-video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test-enhance-frame-to-video.mp4') is True
|
||||
|
@ -30,30 +30,30 @@ def test_job_list() -> None:
|
||||
|
||||
|
||||
def test_job_create() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-create', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-create', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_job_file('test-job-create.json', 'drafted') is True
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-create', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-create', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
|
||||
def test_job_submit() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit', 'test-job-submit', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit', 'test-job-submit', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-submit', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-submit', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-submit', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-submit', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit', 'test-job-submit', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit', 'test-job-submit', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_job_file('test-job-submit.json', 'queued') is True
|
||||
@ -61,25 +61,25 @@ def test_job_submit() -> None:
|
||||
|
||||
|
||||
def test_submit_all() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-submit-all-1', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-submit-all-1', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-submit-all-2', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-submit-all-2', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-submit-all-1', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-submit-all-1', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-submit-all-2', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-submit-all-2', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_job_file('test-job-submit-all-1.json', 'queued') is True
|
||||
@ -88,14 +88,14 @@ def test_submit_all() -> None:
|
||||
|
||||
|
||||
def test_job_delete() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete', 'test-job-delete', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete', 'test-job-delete', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-delete', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-delete', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete', 'test-job-delete', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete', 'test-job-delete', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_job_file('test-job-delete.json', 'drafted') is False
|
||||
@ -103,17 +103,17 @@ def test_job_delete() -> None:
|
||||
|
||||
|
||||
def test_job_delete_all() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-delete-all-1', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-delete-all-1', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-delete-all-2', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-delete-all-2', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-delete-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_job_file('test-job-delete-all-1.json', 'drafted') is False
|
||||
@ -122,87 +122,87 @@ def test_job_delete_all() -> None:
|
||||
|
||||
|
||||
def test_job_add_step() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-add-step', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-add-step', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
assert count_step_total('test-job-add-step') == 0
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-add-step', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-add-step', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-add-step', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-add-step', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert count_step_total('test-job-add-step') == 1
|
||||
|
||||
|
||||
def test_job_remix() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remix-step', 'test-job-remix-step', '0', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remix-step', 'test-job-remix-step', '0', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
assert count_step_total('test-job-remix-step') == 0
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-remix-step', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-remix-step', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-remix-step', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-remix-step', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remix-step', 'test-job-remix-step', '0', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remix-step', 'test-job-remix-step', '0', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert count_step_total('test-job-remix-step') == 1
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert count_step_total('test-job-remix-step') == 2
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remix-step', 'test-job-remix-step', '-1', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remix-step', 'test-job-remix-step', '-1', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert count_step_total('test-job-remix-step') == 3
|
||||
|
||||
|
||||
def test_job_insert_step() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-insert-step', 'test-job-insert-step', '0', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-insert-step', 'test-job-insert-step', '0', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
assert count_step_total('test-job-insert-step') == 0
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-insert-step', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-insert-step', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-insert-step', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-insert-step', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-insert-step', 'test-job-insert-step', '0', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-insert-step', 'test-job-insert-step', '0', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert count_step_total('test-job-insert-step') == 1
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert count_step_total('test-job-insert-step') == 2
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-insert-step', 'test-job-insert-step', '-1', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-insert-step', 'test-job-insert-step', '-1', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert count_step_total('test-job-insert-step') == 3
|
||||
|
||||
|
||||
def test_job_remove_step() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remove-step', 'test-job-remove-step', '0', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remove-step', 'test-job-remove-step', '0', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-remove-step', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-remove-step', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-remove-step', '-j', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-remove-step', '--jobs-path', get_test_jobs_directory(), '-s', get_test_example_file('source.jpg'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-remix-step.jpg') ]
|
||||
subprocess.run(commands)
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remove-step', 'test-job-remove-step', '0', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remove-step', 'test-job-remove-step', '0', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert count_step_total('test-job-remove-step') == 2
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert count_step_total('test-job-remove-step') == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remove-step', 'test-job-remove-step', '-1', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-remove-step', 'test-job-remove-step', '-1', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
@ -26,24 +26,24 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_job_run() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run', 'test-job-run', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run', 'test-job-run', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-run', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-run', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-run.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-run.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run', 'test-job-run', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run', 'test-job-run', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit', 'test-job-run', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit', 'test-job-run', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run', 'test-job-run', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run', 'test-job-run', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
@ -51,33 +51,33 @@ def test_job_run() -> None:
|
||||
|
||||
|
||||
def test_job_run_all() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-run-all-1', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-run-all-1', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-run-all-2', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-run-all-2', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run-all-1', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-run-all-1.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run-all-1', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-run-all-1.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run-all-2', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-run-all-2.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run-all-2', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-run-all-2.mp4'), '--trim-frame-end', '1' ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run-all-2', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-run-all-2.mp4'), '--trim-frame-start', '0', '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-run-all-2', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-run-all-2.mp4'), '--trim-frame-start', '0', '--trim-frame-end', '1' ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-submit-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-run-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
@ -86,24 +86,24 @@ def test_job_run_all() -> None:
|
||||
|
||||
|
||||
def test_job_retry() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry', 'test-job-retry', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry', 'test-job-retry', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-retry', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-retry', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-retry.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-retry.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry', 'test-job-retry', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry', 'test-job-retry', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
set_steps_status('test-job-retry', 'failed')
|
||||
move_job_file('test-job-retry', 'failed')
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry', 'test-job-retry', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry', 'test-job-retry', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
@ -111,26 +111,26 @@ def test_job_retry() -> None:
|
||||
|
||||
|
||||
def test_job_retry_all() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-retry-all-1', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-retry-all-1', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-retry-all-2', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-create', 'test-job-retry-all-2', '--jobs-path', get_test_jobs_directory() ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry-all-1', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-retry-all-1.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry-all-1', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test-job-retry-all-1.jpg') ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry-all-2', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-retry-all-2.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry-all-2', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-retry-all-2.mp4'), '--trim-frame-end', '1' ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry-all-2', '-j', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-retry-all-2.mp4'), '--trim-frame-start', '0', '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-add-step', 'test-job-retry-all-2', '--jobs-path', get_test_jobs_directory(), '--processors', 'face_debugger', '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test-job-retry-all-2.mp4'), '--trim-frame-start', '0', '--trim-frame-end', '1' ]
|
||||
subprocess.run(commands)
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
||||
@ -139,7 +139,7 @@ def test_job_retry_all() -> None:
|
||||
move_job_file('test-job-retry-all-1', 'failed')
|
||||
move_job_file('test-job-retry-all-2', 'failed')
|
||||
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry-all', '-j', get_test_jobs_directory() ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'job-retry-all', '--jobs-path', get_test_jobs_directory() ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert subprocess.run(commands).returncode == 1
|
||||
|
@ -27,14 +27,14 @@ def before_each() -> None:
|
||||
|
||||
|
||||
def test_sync_lip_to_image() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'lip_syncer', '-s', get_test_example_file('source.mp3'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test_sync_lip_to_image.jpg') ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'lip_syncer', '-s', get_test_example_file('source.mp3'), '-t', get_test_example_file('target-240p.jpg'), '-o', get_test_output_file('test_sync_lip_to_image.jpg') ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test_sync_lip_to_image.jpg') is True
|
||||
|
||||
|
||||
def test_sync_lip_to_video() -> None:
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '-j', get_test_jobs_directory(), '--processors', 'lip_syncer', '-s', get_test_example_file('source.mp3'), '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test_sync_lip_to_video.mp4'), '--trim-frame-end', '1' ]
|
||||
commands = [ sys.executable, 'facefusion.py', 'headless-run', '--jobs-path', get_test_jobs_directory(), '--processors', 'lip_syncer', '-s', get_test_example_file('source.mp3'), '-t', get_test_example_file('target-240p.mp4'), '-o', get_test_output_file('test_sync_lip_to_video.mp4'), '--trim-frame-end', '1' ]
|
||||
|
||||
assert subprocess.run(commands).returncode == 0
|
||||
assert is_test_output_file('test_sync_lip_to_video.mp4') is True
|
||||
|
@ -10,6 +10,6 @@ def get_time_ago(days : int, hours : int, minutes : int) -> datetime:
|
||||
|
||||
def test_describe_time_ago() -> None:
|
||||
assert describe_time_ago(get_time_ago(0, 0, 0)) == 'just now'
|
||||
assert describe_time_ago(get_time_ago(0, 0, 5)) == '5 minutes ago'
|
||||
assert describe_time_ago(get_time_ago(0, 0, 10)) == '10 minutes ago'
|
||||
assert describe_time_ago(get_time_ago(0, 5, 10)) == '5 hours and 10 minutes ago'
|
||||
assert describe_time_ago(get_time_ago(5, 10, 15)) == '5 days, 10 hours and 15 minutes ago'
|
||||
assert describe_time_ago(get_time_ago(1, 5, 10)) == '1 days, 5 hours and 10 minutes ago'
|
||||
|
@ -1,24 +1,18 @@
|
||||
import pytest
|
||||
|
||||
from facefusion.download import conditional_download, get_download_size, is_download_done
|
||||
from .helper import get_test_example_file, get_test_examples_directory
|
||||
from facefusion.download import get_static_download_size, ping_static_url, resolve_download_url_by_provider
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
def before_all() -> None:
|
||||
conditional_download(get_test_examples_directory(),
|
||||
[
|
||||
'https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4'
|
||||
])
|
||||
def test_get_static_download_size() -> None:
|
||||
assert get_static_download_size('https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fairface.onnx') == 85170772
|
||||
assert get_static_download_size('https://huggingface.co/facefusion/models-3.0.0/resolve/main/fairface.onnx') == 85170772
|
||||
assert get_static_download_size('invalid') == 0
|
||||
|
||||
|
||||
def test_get_download_size() -> None:
|
||||
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4') == 191675
|
||||
assert get_download_size('https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-360p.mp4') == 370732
|
||||
assert get_download_size('invalid') == 0
|
||||
def test_static_ping_url() -> None:
|
||||
assert ping_static_url('https://github.com') is True
|
||||
assert ping_static_url('https://huggingface.co') is True
|
||||
assert ping_static_url('invalid') is False
|
||||
|
||||
|
||||
def test_is_download_done() -> None:
|
||||
assert is_download_done('https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4', get_test_example_file('target-240p.mp4')) is True
|
||||
assert is_download_done('https://github.com/facefusion/facefusion-assets/releases/download/examples-3.0.0/target-240p.mp4', 'invalid') is False
|
||||
assert is_download_done('invalid', 'invalid') is False
|
||||
def test_resolve_download_url_by_provider() -> None:
|
||||
assert resolve_download_url_by_provider('github', 'models-3.0.0', 'fairface.onnx') == 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/fairface.onnx'
|
||||
assert resolve_download_url_by_provider('huggingface', 'models-3.0.0', 'fairface.onnx') == 'https://huggingface.co/facefusion/models-3.0.0/resolve/main/fairface.onnx'
|
||||
|
@ -1,8 +1,4 @@
|
||||
from facefusion.execution import create_execution_providers, get_execution_provider_choices, has_execution_provider
|
||||
|
||||
|
||||
def test_get_execution_provider_choices() -> None:
|
||||
assert 'cpu' in get_execution_provider_choices()
|
||||
from facefusion.execution import create_inference_execution_providers, get_available_execution_providers, has_execution_provider
|
||||
|
||||
|
||||
def test_has_execution_provider() -> None:
|
||||
@ -10,15 +6,18 @@ def test_has_execution_provider() -> None:
|
||||
assert has_execution_provider('openvino') is False
|
||||
|
||||
|
||||
def test_multiple_execution_providers() -> None:
|
||||
def test_get_available_execution_providers() -> None:
|
||||
assert 'cpu' in get_available_execution_providers()
|
||||
|
||||
|
||||
def test_create_inference_execution_providers() -> None:
|
||||
execution_providers =\
|
||||
[
|
||||
('CUDAExecutionProvider',
|
||||
{
|
||||
'device_id': '1',
|
||||
'cudnn_conv_algo_search': 'DEFAULT'
|
||||
'device_id': '1'
|
||||
}),
|
||||
'CPUExecutionProvider'
|
||||
]
|
||||
|
||||
assert create_execution_providers('1', [ 'cpu', 'cuda' ]) == execution_providers
|
||||
assert create_inference_execution_providers('1', [ 'cpu', 'cuda' ]) == execution_providers
|
||||
|
@ -21,6 +21,7 @@ def before_all() -> None:
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('source.jpg'), '-vf', 'crop=iw*0.6:ih*0.6', get_test_example_file('source-60crop.jpg') ])
|
||||
state_manager.init_item('execution_device_id', 0)
|
||||
state_manager.init_item('execution_providers', [ 'cpu' ])
|
||||
state_manager.init_item('download_providers', [ 'github' ])
|
||||
state_manager.init_item('face_detector_angles', [ 0 ])
|
||||
state_manager.init_item('face_detector_model', 'many')
|
||||
state_manager.init_item('face_detector_score', 0.5)
|
||||
|
@ -1,12 +1,13 @@
|
||||
import glob
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
import pytest
|
||||
|
||||
from facefusion import process_manager, state_manager
|
||||
from facefusion.download import conditional_download
|
||||
from facefusion.ffmpeg import concat_video, extract_frames, read_audio_buffer
|
||||
from facefusion.temp_helper import clear_temp_directory, create_temp_directory, get_temp_directory_path
|
||||
from facefusion.ffmpeg import concat_video, extract_frames, read_audio_buffer, replace_audio, restore_audio
|
||||
from facefusion.filesystem import copy_file
|
||||
from facefusion.temp_helper import clear_temp_directory, create_temp_directory, get_temp_file_path, get_temp_frame_paths
|
||||
from .helper import get_test_example_file, get_test_examples_directory, get_test_output_file, prepare_test_output_directory
|
||||
|
||||
|
||||
@ -23,89 +24,40 @@ def before_all() -> None:
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('target-240p.mp4'), '-vf', 'fps=25', get_test_example_file('target-240p-25fps.mp4') ])
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('target-240p.mp4'), '-vf', 'fps=30', get_test_example_file('target-240p-30fps.mp4') ])
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('target-240p.mp4'), '-vf', 'fps=60', get_test_example_file('target-240p-60fps.mp4') ])
|
||||
state_manager.init_item('temp_frame_format', 'jpg')
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('source.mp3'), '-i', get_test_example_file('target-240p.mp4'), '-ar', '16000', get_test_example_file('target-240p-16khz.mp4') ])
|
||||
subprocess.run([ 'ffmpeg', '-i', get_test_example_file('source.mp3'), '-i', get_test_example_file('target-240p.mp4'), '-ar', '48000', get_test_example_file('target-240p-48khz.mp4') ])
|
||||
state_manager.init_item('temp_path', tempfile.gettempdir())
|
||||
state_manager.init_item('temp_frame_format', 'png')
|
||||
state_manager.init_item('output_audio_encoder', 'aac')
|
||||
|
||||
|
||||
@pytest.fixture(scope = 'function', autouse = True)
|
||||
def before_each() -> None:
|
||||
state_manager.clear_item('trim_frame_start')
|
||||
state_manager.clear_item('trim_frame_end')
|
||||
prepare_test_output_directory()
|
||||
|
||||
|
||||
def test_extract_frames() -> None:
|
||||
target_paths =\
|
||||
extract_set =\
|
||||
[
|
||||
get_test_example_file('target-240p-25fps.mp4'),
|
||||
get_test_example_file('target-240p-30fps.mp4'),
|
||||
get_test_example_file('target-240p-60fps.mp4')
|
||||
(get_test_example_file('target-240p-25fps.mp4'), 0, 270, 324),
|
||||
(get_test_example_file('target-240p-25fps.mp4'), 224, 270, 55),
|
||||
(get_test_example_file('target-240p-25fps.mp4'), 124, 224, 120),
|
||||
(get_test_example_file('target-240p-25fps.mp4'), 0, 100, 120),
|
||||
(get_test_example_file('target-240p-30fps.mp4'), 0, 324, 324),
|
||||
(get_test_example_file('target-240p-30fps.mp4'), 224, 324, 100),
|
||||
(get_test_example_file('target-240p-30fps.mp4'), 124, 224, 100),
|
||||
(get_test_example_file('target-240p-30fps.mp4'), 0, 100, 100),
|
||||
(get_test_example_file('target-240p-60fps.mp4'), 0, 648, 324),
|
||||
(get_test_example_file('target-240p-60fps.mp4'), 224, 648, 212),
|
||||
(get_test_example_file('target-240p-60fps.mp4'), 124, 224, 50),
|
||||
(get_test_example_file('target-240p-60fps.mp4'), 0, 100, 50)
|
||||
]
|
||||
|
||||
for target_path in target_paths:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
for target_path, trim_frame_start, trim_frame_end, frame_total in extract_set:
|
||||
create_temp_directory(target_path)
|
||||
|
||||
assert extract_frames(target_path, '452x240', 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == 324
|
||||
|
||||
clear_temp_directory(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_start() -> None:
|
||||
state_manager.init_item('trim_frame_start', 224)
|
||||
providers =\
|
||||
[
|
||||
(get_test_example_file('target-240p-25fps.mp4'), 55),
|
||||
(get_test_example_file('target-240p-30fps.mp4'), 100),
|
||||
(get_test_example_file('target-240p-60fps.mp4'), 212)
|
||||
]
|
||||
|
||||
for target_path, frame_total in providers:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp_directory(target_path)
|
||||
|
||||
assert extract_frames(target_path, '452x240', 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp_directory(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_start_and_trim_end() -> None:
|
||||
state_manager.init_item('trim_frame_start', 124)
|
||||
state_manager.init_item('trim_frame_end', 224)
|
||||
providers =\
|
||||
[
|
||||
(get_test_example_file('target-240p-25fps.mp4'), 120),
|
||||
(get_test_example_file('target-240p-30fps.mp4'), 100),
|
||||
(get_test_example_file('target-240p-60fps.mp4'), 50)
|
||||
]
|
||||
|
||||
for target_path, frame_total in providers:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp_directory(target_path)
|
||||
|
||||
assert extract_frames(target_path, '452x240', 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
|
||||
clear_temp_directory(target_path)
|
||||
|
||||
|
||||
def test_extract_frames_with_trim_end() -> None:
|
||||
state_manager.init_item('trim_frame_end', 100)
|
||||
providers =\
|
||||
[
|
||||
(get_test_example_file('target-240p-25fps.mp4'), 120),
|
||||
(get_test_example_file('target-240p-30fps.mp4'), 100),
|
||||
(get_test_example_file('target-240p-60fps.mp4'), 50)
|
||||
]
|
||||
|
||||
for target_path, frame_total in providers:
|
||||
temp_directory_path = get_temp_directory_path(target_path)
|
||||
create_temp_directory(target_path)
|
||||
|
||||
assert extract_frames(target_path, '426x240', 30.0) is True
|
||||
assert len(glob.glob1(temp_directory_path, '*.jpg')) == frame_total
|
||||
assert extract_frames(target_path, '452x240', 30.0, trim_frame_start, trim_frame_end) is True
|
||||
assert len(get_temp_frame_paths(target_path)) == frame_total
|
||||
|
||||
clear_temp_directory(target_path)
|
||||
|
||||
@ -125,3 +77,33 @@ def test_read_audio_buffer() -> None:
|
||||
assert isinstance(read_audio_buffer(get_test_example_file('source.mp3'), 1, 1), bytes)
|
||||
assert isinstance(read_audio_buffer(get_test_example_file('source.wav'), 1, 1), bytes)
|
||||
assert read_audio_buffer(get_test_example_file('invalid.mp3'), 1, 1) is None
|
||||
|
||||
|
||||
def test_restore_audio() -> None:
|
||||
target_paths =\
|
||||
[
|
||||
get_test_example_file('target-240p-16khz.mp4'),
|
||||
get_test_example_file('target-240p-48khz.mp4')
|
||||
]
|
||||
output_path = get_test_output_file('test-restore-audio.mp4')
|
||||
|
||||
for target_path in target_paths:
|
||||
create_temp_directory(target_path)
|
||||
copy_file(target_path, get_temp_file_path(target_path))
|
||||
|
||||
assert restore_audio(target_path, output_path, 30, 0, 270) is True
|
||||
|
||||
clear_temp_directory(target_path)
|
||||
|
||||
|
||||
def test_replace_audio() -> None:
|
||||
target_path = get_test_example_file('target-240p.mp4')
|
||||
output_path = get_test_output_file('test-replace-audio.mp4')
|
||||
|
||||
create_temp_directory(target_path)
|
||||
copy_file(target_path, get_temp_file_path(target_path))
|
||||
|
||||
assert replace_audio(target_path, get_test_example_file('source.mp3'), output_path) is True
|
||||
assert replace_audio(target_path, get_test_example_file('source.wav'), output_path) is True
|
||||
|
||||
clear_temp_directory(target_path)
|
||||
|
@ -105,8 +105,11 @@ def test_create_directory() -> None:
|
||||
|
||||
|
||||
def test_list_directory() -> None:
|
||||
assert list_directory(get_test_examples_directory())
|
||||
assert list_directory(get_test_example_file('source.jpg')) is None
|
||||
files = list_directory(get_test_examples_directory())
|
||||
|
||||
for file in files:
|
||||
assert file.get('path') == get_test_example_file(file.get('name') + file.get('extension'))
|
||||
|
||||
assert list_directory('invalid') is None
|
||||
|
||||
|
||||
|
@ -9,9 +9,10 @@ from facefusion.inference_manager import INFERENCE_POOLS, get_inference_pool
|
||||
|
||||
@pytest.fixture(scope = 'module', autouse = True)
|
||||
def before_all() -> None:
|
||||
content_analyser.pre_check()
|
||||
state_manager.init_item('execution_device_id', 0)
|
||||
state_manager.init_item('execution_providers', [ 'cpu' ])
|
||||
state_manager.init_item('download_providers', [ 'github' ])
|
||||
content_analyser.pre_check()
|
||||
|
||||
|
||||
def test_get_inference_pool() -> None:
|
||||
|
@ -2,7 +2,7 @@ from argparse import ArgumentParser
|
||||
|
||||
import pytest
|
||||
|
||||
from facefusion.program_helper import find_argument_group, remove_args, validate_actions
|
||||
from facefusion.program_helper import find_argument_group, validate_actions
|
||||
|
||||
|
||||
def test_find_argument_group() -> None:
|
||||
@ -38,23 +38,3 @@ def test_validate_actions() -> None:
|
||||
action.default = args[action.dest]
|
||||
|
||||
assert validate_actions(program) is False
|
||||
|
||||
|
||||
def test_remove_args() -> None:
|
||||
program = ArgumentParser()
|
||||
program.add_argument('--test-1')
|
||||
program.add_argument('--test-2')
|
||||
program.add_argument('--test-3')
|
||||
|
||||
actions = [ action.dest for action in program._actions ]
|
||||
|
||||
assert 'test_1' in actions
|
||||
assert 'test_2' in actions
|
||||
assert 'test_3' in actions
|
||||
|
||||
program = remove_args(program, [ 'test_1', 'test_2' ])
|
||||
actions = [ action.dest for action in program._actions ]
|
||||
|
||||
assert 'test_1' not in actions
|
||||
assert 'test_2' not in actions
|
||||
assert 'test_3' in actions
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user